满分5 > 初中数学试题 >

(2006•内江)已知,二次函数y=mx2+3(m-)x+4(m<0)与x轴交于...

(2006•内江)已知,二次函数y=mx2+3(m-manfen5.com 满分网)x+4(m<0)与x轴交于A、B两点,(A在B的左边),与y轴交于点C,且∠ACB=90度.
(1)求这个二次函数的解析式;
(2)矩形DEFG的一条边DG在AB上,E、F分别在BC、AC上,设OD=x,矩形DEFG的面积为S,求S关于x的函数解析式;
(3)将(1)中所得抛物线向左平移2个单位后,与x轴交于A′、B′两点(A′在B′的左边),矩形D′E′F′G′的一条边D′G′在A′B′上(G′在D′的左边),E′、F′分别在抛物线上,矩形D′E′F′G′的周长是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
(1)根据二次函数的解析式可以得到C的坐标是(0,4),则OC=4,∠ACB=90°且OC⊥AB,因而满足射影定理,因而有C02=AO•OB,AO•OB就是方程mx2+3(m-)x+4=0的两根的积,根据韦达定理,AO•OB就可以用m表示出来.得到关于m的方程,求出m的值. (2)已知OD=x,即E点的横坐标是x,代入抛物线的解析式就可以求出E点的纵坐标;抛物线与x轴的交点坐标容易得到,根据待定系数法就可以求出直线AC的解析式.把E点的纵坐标代入AC的解析式就可以求出F点的横坐标,就可以得到EF的长(用x表示出来).则函数解析式就可以得到. (3)在原来抛物线解析式中用x+2代替解析式中的x,就可以得到平移后的抛物线的解析式.可以设D’(x,O),同(2)中的解法就可以求出矩形D′E′F′G′的周长关于x的函数,根据二次函数的性质求最值. 【解析】 (1)∵CO2=AO•OB m=- y=-x2-x+4 (2)A(-8,0),B(2,0) OD=x ED=4-2xEF=5x S=ED•EF=-10x2+20x(0<x<2) (3)平移后的抛物线y′=x2- ∴A′(-10,0)B’(0,0) 设D’(x,0),则G’(-10-x,0) E'(x,x2-x), F'(-10-x,x2-x) C矩形D'E'F'G'=2(GD+DE) =2[10+2x+(x2-x)] =-x2-x+20(-5<x<0) 当x=-1时,C矩形D'E'F'G'最大值=20.5.
复制答案
考点分析:
相关试题推荐
(2006•内江)如图AB是⊙O的直径,PA切⊙O于点C,∠BPA的角平分线交AC于点E,交AB于点F,交⊙O于点D,∠B=60°,线段BF、AF是一元二次方程x2-kx+2manfen5.com 满分网=0的两根(k为常数).
(1)求证:PB•AE=PA•BF;
(2)求证:⊙O的直径是常数k;
(3)求:tan∠DPB.

manfen5.com 满分网 查看答案
(2006•内江)已知实数x、y、a满足:manfen5.com 满分网,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.
查看答案
(2006•内江)内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元.
试问:
(1)甲、乙两公司单独完成这项工程各需多少天?
(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?
查看答案
(2006•内江)如图AB是⊙O的直径,弦DC⊥AB于点E,在manfen5.com 满分网上取一点F,连接CF交AB于点M,连接DF并延长交BA的延长线于点N.
求证:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

manfen5.com 满分网 查看答案
(2006•内江)某学校要印刷一批宣传材料,甲印务公司提出收制版费900元,另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元.
(1)分别写出两家印务公司的收费y(元)与印刷材料的份数x(份)之间的函数关系式;
(2)若学校预计要印刷5000份以内的宣传材料,请问学校应选择哪一家印务公司更合算?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.