满分5 > 初中数学试题 >

(2010•东阳市)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞...

(2010•东阳市)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4manfen5.com 满分网=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取manfen5.com 满分网=5)

manfen5.com 满分网
(1)依题意代入x的值可得抛物线的表达式. (2)令y=0可求出x的两个值,再按实际情况筛选. (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得 2=-(x-6)2解得x的值即可知道CD、BD. 【解析】 (1)(3分)如图,设第一次落地时, 抛物线的表达式为y=a(x-6)2+4.(1分) 由已知:当x=0时y=1, 即1=36a+4, ∴a=-(2分) ∴表达式为y=-(x-6)2+4,(3分) (或y=-x2+x+1). (2)令y=0,-(x-6)2+4=0, ∴(x-6)2=48. x1=4+6≈13,x2=-4+6<0(舍去).(2分) ∴足球第一次落地距守门员约13米.(3分) (3)解法一:如图,第二次足球弹出后的距离为CD 根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位) ∴2=-(x-6)2+4解得x1=6-2,x2=6+2(2分) ∴CD=|x1-x2|=4≈10(3分) ∴BD=13-6+10=17(米).(4分) 解法二:令-(x-6)2+4=0 解得x1=6-4(舍),x2=6+4≈13.∴点C坐标为(13,0).(1分) 设抛物线CND为y=-(x-k)2+2(2分) 将C点坐标代入得: -(13-k)2+2=0 解得:k1=13-2(舍去),k2=6+4+2≈6+7+5=18(3分) 令y=0,0=-(x-18)2+2,x1=18-2(舍去),x2=18+2≈23, ∴BD=23-6=17(米). 解法三:由解法二知,k=18, 所以CD=2(18-13)=10, 所以BD=(13-6)+10=17. 答:他应再向前跑17米.(4分)
复制答案
考点分析:
相关试题推荐
(2006•新疆)A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧法”.方法是:
①画线段AB,分别以A,B为圆心,AB长为半径画弧相交于C;
②以C为圆心,仍以AB长为半径画弧交AC的延长线于D;
③连接DB.则∠ABD就是直角.
(1)请你就∠ABD是直角作出合理解释;
(2)现有一长方形木块的残留部分如图,其中AB,CD整齐且平行,BC,AD是参差不齐的毛边.请你在毛边附近用尺规画一条与AB,CD都垂直的边(不写作法,保留作图痕迹);
manfen5.com 满分网
B.如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
(1)写出图中所有相等的线段,并选择其中一对给予证明;
(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.
manfen5.com 满分网
查看答案
(2006•新疆)如图,已知菱形的两条对角线长为a,b,你能将菱形沿对角线分割后拼接成矩形吗?画图说明(拼出一种图形即可);在此过程中,你能发现菱形的面积与a,b的关系吗?

manfen5.com 满分网 查看答案
(2006•新疆)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.
举例:
函数表达式:

manfen5.com 满分网 查看答案
(2006•新疆)如图,⊙O的半径长为12cm,弦AB=16cm.
(1)求圆心到弦AB的距离;
(2)如果弦AB的两端点在圆周上滑动(AB弦长不变),那么弦AB的中点形成什么样的图形?

manfen5.com 满分网 查看答案
(2006•新疆)试用举反例的方法说明下列命题是假命题.
举例:如果ab<0,那么a+b<0
反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0
所以,这个命题是假命题.
(1)如果a+b>0,那么ab>0;反例:
(2)如果a是无理数,b是无理数,那么a+b是无理数.反例:
(3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.反例:
(画出图形,并加以说明)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.