(2006•临安市)如图,△OAB是边长为2+
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
x
2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.
考点分析:
相关试题推荐
(2007•衢州)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)EB∥DF.
查看答案
(2006•临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为
.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
查看答案
(2006•临安市)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
查看答案
(2006•临安市)请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a
2c
2-b
2c
2=a
4-b
4,试判断△ABC的形状.
【解析】
∵a
2c
2-b
2c
2=a
4-b
4,A
∴c
2(a
2-b
2)=(a
2+b
2)(a
2-b
2),B
∴c
2=a
2+b
2,C
∴△ABC为直角三角形.D
问:
(1)在上述解题过程中,从哪一步开始出现错误:______;
(2)错误的原因是:______;
(3)本题正确的结论是:______.
查看答案
(2006•临安市)(1)
÷(x-
);
(2)解方程:
.
查看答案