满分5 > 初中数学试题 >

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶...

(2006•临安市)如图,△OAB是边长为2+manfen5.com 满分网的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-manfen5.com 满分网x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

manfen5.com 满分网
(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标; (2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标; (3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能: ①∠A′EF=90°,根据折叠的性质,∠A′EF=∠AEF=90°,此时A′与O重合,与题意不符,因此此种情况不成立. ②∠A′FE=90°,同①,可得出此种情况也不成立. 因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形. 【解析】 (1)由已知可得∠A′OE=60°,A′E=AE, 由A′E∥x轴,得△OA′E是直角三角形, 设A′的坐标为(0,b), AE=A′E=b,OE=2b,b+2b=2+, 所以b=1,A′、E的坐标分别是(0,1)与(,1). (2)因为A′、E在抛物线上, 所以, 所以, 函数关系式为y=-x2+x+1, 由-x2+x+1=0, 得x1=-,x2=2, 与x轴的两个交点坐标分别是(,0)与(,0). (3)不可能使△A′EF成为直角三角形. ∵∠FA′E=∠FAE=60°, 若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90° 若∠A′EF=90°,利用对称性,则∠AEF=90°, A、E、A三点共线,O与A重合,与已知矛盾; 同理若∠A′FE=90°也不可能, 所以不能使△A′EF成为直角三角形.
复制答案
考点分析:
相关试题推荐
(2007•衢州)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)EB∥DF.

manfen5.com 满分网 查看答案
(2006•临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为manfen5.com 满分网
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
查看答案
(2006•临安市)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

manfen5.com 满分网 查看答案
(2006•临安市)请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
【解析】

∵a2c2-b2c2=a4-b4,A
∴c2(a2-b2)=(a2+b2)(a2-b2),B
∴c2=a2+b2,C
∴△ABC为直角三角形.D
问:
(1)在上述解题过程中,从哪一步开始出现错误:______
(2)错误的原因是:______
(3)本题正确的结论是:______
查看答案
(2006•临安市)(1)manfen5.com 满分网÷(x-manfen5.com 满分网);
(2)解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.