满分5 > 初中数学试题 >

(2007•安徽)按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个...

(2007•安徽)按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:
(Ⅰ)新数据都在60~100(含60和100)之间;
(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.
(1)若y与x的关系是y=x+p(100-x),请说明:当p=manfen5.com 满分网时,这种变换满足上述两个要求;
(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

manfen5.com 满分网
(1)当P=时,y=x+50,观察这个一次函数可知:斜率>0,则y随x的增大而增大,因此符合条件Ⅱ;因为20≤x≤100,即20≤2y-100≤100,可得60≤y≤100,因此也符合Ⅰ的条件. (2)本题答案不唯一.可根据抛物线的开口方向和抛物线的对称轴来说明. 【解析】 (1)当P=时,y=x+(100-x), 即y=x+50. ∴y随着x的增大而增大, 即P=时,满足条件(Ⅱ) 又当x=20时,y=×20+50=60. 而原数据都在20~100之间, 所以新数据都在60~100之间,即满足条件(Ⅰ), 综上可知,当P=时,这种变换满足要求. (2)本题是开放性问题,答案不唯一. 若所给出的关系式满足: (a)h≤20; (b)若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=a(x-20)2+k, ∵a>0, ∴当20≤x≤100时,y随着x的增大而增大, 令x=20,y=60,得k=60 ① 令x=100,y=100,得a×802+k=100② 由①②解得, ∴y=(x-20)2+60.
复制答案
考点分析:
相关试题推荐
(2007•安徽)如图1,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点P是对角线BD上的一点,PQ∥BA交AD于点Q,PS∥BC交DC于点S,四边形PQRS是平行四边形.
(1)当点P与点B重合时,图1变为图2,若∠ABD=90°,求证:△ABR≌△CRD;
(2)对于图1,若四边形PRDS也是平行四边形,此时,你能推出四边形ABCD还应满足什么条件?manfen5.com 满分网
查看答案
(2007•安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与manfen5.com 满分网,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,manfen5.com 满分网,2,manfen5.com 满分网,2manfen5.com 满分网五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式.
manfen5.com 满分网
钉子数(n)S值
 2×2 2
 3×3 2+3
 4×4 2+3+( )
 5×5 ( )

查看答案
(2007•安徽)如图,DE分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等.设BC=a,AC=b,AB=c.
(1)求AE和BD的长;
(2)若∠BAC=90°,△ABC的面积为S,求证:S=AE•BD.

manfen5.com 满分网 查看答案
(2008•锡林郭勒盟)如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取manfen5.com 满分网≈1.73,计算结果保留整数)

manfen5.com 满分网 查看答案
(2007•安徽)据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取manfen5.com 满分网≈1.41)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.