(2007•金昌)在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边作如图所示的正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF.
(1)猜想OD和DE之间的数量关系,并说明理由;
(2)设OD=t,求OB的长(用含t的代数式表示);
(3)若点B在E的右侧时,△BFE与△OFE能否相似?若能,请你求出此时经过O,A,B三点的抛物线解析式;若不能,请说明理由.
考点分析:
相关试题推荐
(2009•德城区)一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.
(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为______,周长为______
查看答案
(2007•金昌)暑假期间,王红随爸爸妈妈到一个著名森林风景区旅游,导游提醒大家上山要多带一件衣服,并介绍山区气温会随着海拔高度的增加而下降,沿途王红利用随身带的登山表(具有测定当前位置的海拔高度和气温等功能)测得以下的数据:
海拔高度x(米) | 300 | 400 | 500 | 600 | 700 | … |
气温y(℃) | 29.2 | 28.6 | 28.0 | 27.4 | 26.8 | … |
(1)设海拔高度为x(米),气温为y(℃),根据上表提供的数据在下列直角坐标系中描点并连线;
(2)观察(1)中所画出的图象,猜想y与x之间函数关系,求出所猜想的函数关系表达式;
(3)如果王红到达山顶时,只告诉你山顶的气温为20.2℃,请计算此风景区山顶海拔高度大约是多少米?
查看答案
(2007•金昌)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.
查看答案
(2007•金昌)某市搞了一个调查,调查内容:“是否曾经丢过自行车,以及丢车后所采取的对策”,他们随机采访了500名群众,所得数据制成了统计图.根据统计图,请你回答下列问题:
(1)请直接在扇形统计图中,填写“丢过自行车”和“没有丢过自行车”的百分比.
(2)如果某市常住人口220万左右,那么你估算一下大约有多少人丢过自行车?
(3)请你对“丢车”这一现象,提出自己的一条合理化建议.
查看答案
(2007•金昌)你喜欢玩游戏吗?
小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?如果公平,请说明理由;如果不公平,请你做一修改,使他俩获胜的机会一样大.
查看答案