(2008•南充)如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,
),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O
1,点C落在线段AB点C
1处,并且DO
1与DC
1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C
1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.
考点分析:
相关试题推荐
(2007•茂名)如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧
的中点,AC交BD于点E,AE=2,EC=1.
(1)求证:△DEC∽△ADC;
(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.
(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.
查看答案
(2007•茂名)已知甲、乙两辆汽车同时、同方向从同一地点A出发行驶.
(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时,求甲、乙两车的速度;
(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A,请你设计一种方案使甲车尽可能地远离出发点A,并求出甲车一共行驶了多少千米?
查看答案
(2007•茂名)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:
品名 | 厂家批发价(元/只) | 市场零售价(元/只) |
篮球 | 130 | 160 |
排球 | 100 | 120 |
(1)该采购员最多可购进篮球多少只?
(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?
查看答案
(2007•茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.
查看答案
(2007•茂名)已知函数y=x
2+2x+c的图象与x轴的两交点的横坐标分别是x
1,x
2,且x
12+x
22=c
2-2c,求c及x
1,x
2的值.
查看答案