连接DE,过A作AH⊥BC于H.由于DE是AB、AC的中点,利用三角形中位线定理可得DE∥BC,并且可知△ADE的高等于AH,再结合等腰三角形三线合一性质,以及勾股定理可求AH,那么△ADE的面积就可求.而所求S△FOG+S四边形ADOE=S△ADE+S△DOE+S△FOG,又因为△DOE和△FOG的底相等,高之和等于AH的一半,故它们的面积和可求,从而可以得到S△FOG+S四边形ADOE的面积.
【解析】
如图:连接DE,过A向BC作垂线,H为垂足,
∵△ABC中,D、E分别是AB、AC的中点,
∴DE,AH分别是△ABC的中位线和高,BH=CH=BC=×6=3,
∵AB=AC=5,BC=6,由勾股定理得AH===4,
∴S△ADE=BC•=×3×=3,
设△DOE的高为a,△FOG的高为b,则a+b==2,
∴S△DOE+S△FOG=DE•a+FG•b=×3(a+b)=×3×2=3,
∴三角形FGO的面积与四边ADOE的面积之和恒为定值,则这个定值是
S△ADE+S△DOE+S△FOG=3+3=6.
故选D.