满分5 > 初中数学试题 >

(2007•武汉)如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(...

(2007•武汉)如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②manfen5.com 满分网,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.
manfen5.com 满分网
(1)已知了Rt△AOB≌Rt△CDA,因此OB=AD=2,OA=CD=1,据此可求出C点坐标,然后将C点坐标代入抛物线中即可求出二次函数的解析式. (2)可以AB为边在抛物线的右侧作正方形AQPB,过P作PE⊥y轴,过Q作QG垂直x轴于G,不难得出三角形ABO和三角形BPE和三角形QAG都全等,据此可求出P,Q的坐标,然后将两点坐标代入抛物线的解析式中即可判断出P、Q是否在抛物线上. (另一种解法,如果存在这样的正方形AQPB,那么Q点必为直线CA与抛物线的交点,据此可求出Q点坐标,同理可先求出直线BP的解析式进而求出P点坐标,然后根据所得的P、Q的坐标判定矩形的四边是否相等即可.) (3)本题中应该是②成立.本题要通过构建相似三角形求解.可连接EF,过F作FM∥GB角AB的延长线于M,那么根据BG∥MF可得出BG:AG=MF:AF,因此只需证明FM=BF即可.由于∠MBF是圆的内接四边形,因此∠FBM=∠AEF,而根据BG∥FM,可得出∠M=∠ABE,题中告诉了AE=AF,即弧AE=弧AF,根据圆周角定理可得∠AEF=∠ABE,由此可得出∠M=∠FBM,即BF=FM,由此可得证. 3)结论②成立,证明如下:连EF,过F作FM∥BG交AB的延长线于M,则△AMF∽△ABG, ∴ 由(1)知△ABC是等腰直角三角形, ∴∠1=∠2=45° ∵AF=AE ∴∠AEF=∠1=45°, ∴∠EAF=90°, ∴EF是⊙O的直径. ∴∠EBF=90°, ∵FM∥BG, ∴∠MFB=∠EBF=90°,∠M=∠2=45°, ∴BF=MF, 【解析】 (1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1 ∴C点坐标为(-3,1), ∴抛物线经过点C, ∴1=a(-3)2+a(-3)-2, ∴a= ∴抛物线的解析式为y=x2+x-2 (2)在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形. 以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO, ∴PE=AG=BO=2,BE=QG=AO=1, ∴P点坐标为(2,1),Q点坐标为(1,-1). 由(1)抛物线y=x2+x-2 当x=2时,y=1;当x=1时,y=-1. ∴P、Q在抛物线上. 故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形. (2)另【解析】 在抛物线(对称轴右侧)上存在点P、Q,使四边形ABPQ是正方形. 延长CA交抛物线于Q,过B作BP∥CA交抛物线于P,连PQ,设直线CA、BP的解析式分别为y=k1x+b1;y=k2x+b2, ∵A(-1,0),C(-3,1), ∴CA的解析式为y=-x-, 同理得BP的解析式y=-x+2, 解方程组, 得Q点坐标为(1,-1), 同理得P点坐标为(2,1) 由勾股定理得AQ=BP=AB=,而∠BAQ=90°,四边形ABPQ是正方形, 故在抛物线(对称轴右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形. (3)结论②成立, 证明如下:连EF,过F作FM∥BG交AB的延长线于M,则△AMF∽△ABG, ∴ 由(1)知△ABC是等腰直角三角形, ∴∠1=∠2=45° ∵AF=AE ∴∠AEF=∠1=45°, ∴∠EAF=90°, ∴EF是⊙O的直径. ∴∠EBF=90°, ∵FM∥BG, ∴∠MFB=∠EBF=90°,∠M=∠2=45°, ∴BF=MF, ∴.
复制答案
考点分析:
相关试题推荐
(2007•武汉)填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°manfen5.com 满分网;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
manfen5.com 满分网
查看答案
(2007•武汉)康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台.从A、B两地运往甲、乙两地的费用如下表:
甲地(元/台)乙地(元/台)
A地600500
B地400800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式;
(2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?
查看答案
(2010•密云县)如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.

manfen5.com 满分网 查看答案
(2007•武汉)某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.
manfen5.com 满分网
请你根据不完整的频率分布表,解答下列问题:
(1)补全频数分布直方图;
(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.
查看答案
(2007•武汉)如图①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图②中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:
(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;
(2)请你在图②中画出第二个叶片F2
(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.