满分5 > 初中数学试题 >

(2007•资阳)如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等...

(2007•资阳)如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
manfen5.com 满分网
(1)根据∠EFB与∠FEB都是弦切角,可得△ABC是等边三角形,∠ABC=∠BAC=∠ACB=60°,即△BFE为等边三角形,所以求得∠BAC=∠BFE,∠BCA=∠BEF,可证明EF∥AC; (2)根据圆切BC于E,EG为直径,AD=EG,AD⊥BC,可判定四边形ADEG为矩形; (3)由(1)(2)的结论,证明AC垂直平分FG;再根据垂径定理,可知AC必过圆心,又EG为直径,所以AC与GE的交点O为此圆的圆心. (1)【解析】 EF∥AC; (2)【解析】 四边形ADEG为矩形; 理由: ∵EG⊥BC,E为切点, ∵BC为圆O的切线, ∴EG为直径, ∴EG=AD; 又∵AD⊥BC,EG⊥BC, ∴AD∥EG, 由EG=AD,AD∥EG, 得出四边形ADEG为平行四边形, ∵∠ADE=90°, ∴平行四边形ADEG为矩形; (3)证明:连接FG,由(2)可知EG为直径, ∴FG⊥EF; 又由(1)可知EF∥AC, ∴AC⊥FG; 又∵四边形ADEG为矩形, ∴EG⊥AG, ∴AG是已知圆的切线; ∵AF=AG, ∴AC是FG的垂直平分线,故AC必过圆心,(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角,根据等腰三角形三线合一定理即可得出AC垂直平分FG) ∴圆心O就是AC与EG的交点.
复制答案
考点分析:
相关试题推荐
(2007•资阳)如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.

manfen5.com 满分网 查看答案
(2007•资阳)陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
查看答案
(2007•资阳)设a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2(n为大于0的自然数).
(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由).
查看答案
(2007•资阳)一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:manfen5.com 满分网;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

manfen5.com 满分网 查看答案
(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数manfen5.com 满分网图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.