(2007•丽水)小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片 |
内容:一元二次方程解法归纳 时间:2007年6月×日 |
举例:求一元二次方程x2-x-1=0的两个解 |
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 【解析】
|
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解.
|
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.
|
考点分析:
相关试题推荐
(2007•丽水)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.
(1)在下面的菱形斜网格中画出示意图;
(2)判断所拼成的三种图形的面积(s)、周长(l)的大小关系(用“=”、“>”或“<”连接):
面积关系是______;周长关系是______.
查看答案
(2008•张家界)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.
求证:BE=CF.
查看答案
(2007•丽水)(1)计算:
+2sin30°;
(2)解不等式:4x-7<3x-1.
查看答案
(2007•丽水)廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
x
2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是
米.(精确到1米)
查看答案
(2007•丽水)如果一个立体图形的主视图为矩形,则这个立体图形可能是
.(只需填上一个立体图形)
查看答案