(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm
2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
考点分析:
相关试题推荐
(2007•温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张1~6月份的销售额如下表:
月份 销售额 | 销售额(单位:元) |
1月 | 2月 | 3月 | 4月 | 5月 | 6月 |
小李(A公司) | 11600 | 12800 | 14000 | 15200 | 16400 | 17600 |
小张(B公司 | 7400 | 9200 | 1100 | 12800 | 14600 | 16400 |
(1)请问小李与小张3月份的工资各是多少?
(2)小李1~6月份的销售额y
1与月份x的函数关系式是y
1=1200x+10400,小张1~6月份的销售额y
2也是月份x的一次函数,请求出y
2与x的函数关系式;
(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.
查看答案
(2007•温州)如图,点P在⊙O的直径BA的延长线上,AB=2PA,PC切⊙O于点C,连接BC.
(1)求∠P的正弦值;
(2)若⊙O的半径r=2cm,求BC的长度.
查看答案
(2008•双柏县)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
查看答案
(2007•温州)如图,矩形PMON的边OM,ON分别在坐标轴上,且点P的坐标为(-2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P′M′O′N′(P⇒P′,M⇒M′,O⇒O′,N⇒N′)
(1)请在图中的直角坐标系中画出平移后的图象;
(2)求直线OP的函数解析式.
查看答案
(2007•温州)某校数学课题小组了解到:6个牛奶盒经过工艺处理可以制作成一个卷纸.为了解市民节约和环保意识,该课题小组调查了本市100户经常饮用牛奶的家庭对牛奶的处理方式,并制成如下统计图.
(1)这100户家庭中有多少户扔掉牛奶盒?
(2)如果该市有1万户经常饮用牛奶的家庭,请估算扔掉牛奶盒的家庭有多少户?
(3)若(2)中这1万户家庭每户一年平均饮用90盒牛奶,请估算一年扔掉的牛奶盒可以制作成成多少个卷纸?
查看答案