满分5 > 初中数学试题 >

如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m...

manfen5.com 满分网如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且manfen5.com 满分网=m,manfen5.com 满分网=n,则manfen5.com 满分网+manfen5.com 满分网=   
根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案. 【解析】 分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE∥AD∥CF, ∵点D是BC的中点, ∴MD是梯形的中位线, ∴BE+CF=2MD, ∴+==+===1.
复制答案
考点分析:
相关试题推荐
(2012•武侯区一模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为    查看答案
方程x2-manfen5.com 满分网x+a3=0的根中,一个根是另一个根的平方,则a=    查看答案
满足方程|x+2|+|x-3|=5的x的取值范围是    查看答案
平面上有n个点(n≥3,n为自然数),其中任何三点不在同一直线上.证明:一定存在三点,以这三点作为顶点的三角形中至少有一个内角不大于manfen5.com 满分网
查看答案
如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.
(1)求证:RQ是⊙O的切线;
(2)求证:OB2=PB•PQ+OP2
(3)当RA≤OA时,试确定∠B的取值范围.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.