满分5 > 初中数学试题 >

(2008•厦门)已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b)...

(2008•厦门)已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
(1)因为抛物线y=x2+(b-1)x+c经过点P(-1,-2b),所以将点P代入解析式即可求得; (2)因为b=3,所以求得c的值,即可求得抛物线的解析式,然后利用配方法求出顶点坐标; (3)解此题的关键是首先确定函数的草图,即开口方向是向上,对称轴为x=,在y轴的左侧,根据题意确定点B的坐标;因为点P与点B关于对称轴对称,所以确定对称轴方程,从而求得b、c的值,求得函数解析式. 【解析】 (1)依题意得:(-1)2+(b-1)(-1)+c=-2b (2分) ∴b+c=-2.(3分) (2)当b=3时,c=-5,(4分) ∴y=x2+2x-5=(x+1)2-6, ∴抛物线的顶点坐标是(-1,-6).(6分) (3)当b>3时,抛物线对称轴x= ∴对称轴在点P的左侧 因为抛物线是轴对称图形,P(-1,-2b)且BP=2PA ∴B(-3,-2b) (9分) ∴=-2, ∴b=5 (10分) 又b+c=-2, ∴c=-7 (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7. (12分) 解法2:(3) 当b>3时,-b<-3,1-b<-2,则x=-=<-1, ∴对称轴在点P的左侧,因为抛物线是轴对称图形 ∵P(-1,-2b),且BP=2PA, ∴B(-3,-2b) (9分) ∴(-3)2-3(b-1)+c=-2b(10分) 又b+c=-2, 解得b=5,c=-7(11分) 这条抛物对应的二次函数关系式为y=x2+4x-7.(12分) 解法3:(3)∵b+c=-2, ∴c=-b-2 ∴y=x2+(b-1)x-b-2( 7分) BP∥x轴, ∴x2+(b-1)x-b-2=-2b( 8分) 即x2+(b-1)x+b-2=0 解得:x1=-1,x2=-(b-2),即xB=-(b-2)10分 由BP=2PA, ∴-1+(b-2)=2×1 ∴b=5,c=-7  (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7.(12分)
复制答案
考点分析:
相关试题推荐
(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

manfen5.com 满分网 查看答案
(2008•厦门)已知一次函数与反比例函数的图象交于点P(-2,1)和Q(1,m)
(Ⅰ)求反比例函数的关系式;
(Ⅱ)求Q点的坐标和一次函数的解析式;
(Ⅲ)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x为何值时,一次函数的值大于反比例函数的值.
查看答案
(2008•厦门)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案
(2008•厦门)如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)(参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751)

manfen5.com 满分网 查看答案
(2008•甘南州)四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.
(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;
(2)求取到的两张卡片上的数字之积为奇数的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.