满分5 > 初中数学试题 >

(2008•厦门)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠...

(2008•厦门)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

manfen5.com 满分网
(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形; (2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方; (3)因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD. (1)证明:连接EF交AC于O, 当顶点A与C重合时,折痕EF垂直平分AC, ∴OA=OC,∠AOE=∠COF=90°(1分) ∵在矩形ABCD中,AD∥BC, ∴∠EAO=∠FCO, ∴△AOE≌△COF(ASA). ∴OE=OF(2分) ∴四边形AFCE是菱形.(3分) (2)【解析】 四边形AFCE是菱形,∴AF=AE=10. 设AB=x,BF=y,∵∠B=90, ∴(x+y)2-2xy=100① 又∵S△ABF=24,∴xy=24,则xy=48.②(5分) 由①、②得:(x+y)2=196(6分) ∴x+y=14,x+y=-14(不合题意舍去) ∴△ABF的周长为x+y+AF=14+10=24.(7分) (3)【解析】 过E作EP⊥AD交AC于P,则P就是所求的点.(9分) 证明:由作法,∠AEP=90°, 由(1)得:∠AOE=90°,又∠EAO=∠EAP, ∴△AOE∽△AEP(AA), ∴=,则AE2=AO•AP(10分) ∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP(11分) ∴2AE2=AC•AP(12分) 即P的位置是:过E作EP⊥AD交AC于P.
复制答案
考点分析:
相关试题推荐
(2008•厦门)已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
查看答案
(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

manfen5.com 满分网 查看答案
(2008•厦门)已知一次函数与反比例函数的图象交于点P(-2,1)和Q(1,m)
(Ⅰ)求反比例函数的关系式;
(Ⅱ)求Q点的坐标和一次函数的解析式;
(Ⅲ)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x为何值时,一次函数的值大于反比例函数的值.
查看答案
(2008•厦门)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案
(2008•厦门)如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)(参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.