满分5 > 初中数学试题 >

(2008•佛山)我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构...

(2008•佛山)我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是manfen5.com 满分网的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

manfen5.com 满分网
(1)本题AB⊥DE,满足垂径定理,可以写出垂径定理的结论; (2)根据三角形相似就可以证出; (3)若点C和点E重合,设∠BAC=x,又D是的中点,根据2∠CAD=∠CAD+ACD=180°-∠ABC,就可以求出∠BAC的度数. 【解析】 (1)弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给(1分),写对两个给2分) (2)如图,AB为弦,CD为弦,且AB与CD在圆内相交于点P. 结论:PA•PB=PC•PD. 证明:连接AD,BC, ∵∠APD=∠BPC,∠D=∠B ∴△APD∽△BPC ∴PA•PB=PC•PD; (3)若点C和点E重合, 则由圆的对称性,知点C和点D关于直径AB对称,(8分) 设∠BAC=x,则∠BAD=x,∠ABC=90°-x,(9分) 又D是的中点,所以2∠CAD=∠CAD+∠ACD=180°-∠ABC, 即2•2x=180°-(90°-x),(10分) 解得x=∠BAC=30°.(11分) (若求得AB=或AF=3•FB等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明.)
复制答案
考点分析:
相关试题推荐
(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

manfen5.com 满分网 查看答案
(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

manfen5.com 满分网 查看答案
(2008•佛山)某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.
(1)将这些货物一次性运到目的地,有几种租用货车的方案?
(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?
查看答案
(2008•佛山)如图,在直角△ABC内,以A为一个顶点作正方形ADEF,使得点E落在BC边上.
(1)用尺规作图,作出D、E、F中的任意一点(保留作图痕迹,不写作法和证明.另外两点不需要用尺规作图确定,作草图即可);
(2)若AB=6,AC=2,求正方形ADEF的边长.

manfen5.com 满分网 查看答案
(2008•佛山)对于任意的正整数n,所有形如n3+3n2+2n的数的最大公约数是什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.