满分5 > 初中数学试题 >

(2008•梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=...

(2008•梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

manfen5.com 满分网
(1)已知AD=DC=CB,根据等边对等角,以及平行线的性质.可以得到,∠CDB=∠CBD=∠DBA.若设,∠CDB=∠CBD=∠DBA=x度,则∠ABC=2x度,∠C=90+x度.根据平行线的性质同旁内角互补,就可以求出x的值.在直角△ABD和直角△AOD中,根据三角函数,就可以求出OA、OD的长度,就可以得到A,D,C的坐标. (2)已知A,D,C的坐标,根据待定系数法就可以求出抛物线的解析式以及对称轴. (3)△PDB为等腰三角形,应分BD是底边,和BD是腰两种情况进行讨论.而BD是腰又要分D是顶角的顶点和B是顶角的顶点两种情况进行讨论. 【解析】 (1)∵DC∥AB,AD=DC=CB, ∴∠CDB=∠CBD=∠DBA (5分) ∠DAB=∠CBA, ∴∠DAB=2∠DBA,(1分 ∠DAB+∠DBA=90°, ∴∠DAB=60°(5分) ∠DBA=30°, ∵AB=4, ∴DC=AD=2,(2分) Rt△AOD,OA=1,OD=,AD=2.(5分) ∴A(-1,0),D(0,),C(2,).(4分) (2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0), 故可设所求为y=a(x+1)(x-3)(6分) 将点D(0,)的坐标代入上式得,a=. 所求抛物线的解析式为y=-(x+1)(x-3),(7分) 其对称轴L为直线x=1.(8分) (3)△PDB为等腰三角形,有以下三种情况: ①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B, △P1DB为等腰三角形;(9分) ②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3,△P2DB,△P3DB为等腰三角形; ③与②同理,L上也有两个点P4、P5,使得BD=BP4,BD=BP5.(10分) 由于以上各点互不重合,所以在直线L上,使△PDB为等腰三角形的点P有5个.
复制答案
考点分析:
相关试题推荐
(2008•梅州)“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:
物资种类食品药品生活用品
每辆汽车运载量(吨)654
每吨所需运费(元/吨)120160100
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
查看答案
(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
(2008•梅州)已知关于x的一元二次方程x2-mx-2=0…①
(1)若x=-1是方程①的一个根,求m的值和方程①的另一根;
(2)对于任意实数m,判断方程①的根的情况,并说明理由.
查看答案
(2008•梅州)如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.

manfen5.com 满分网 查看答案
(2008•梅州)如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H.
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.