满分5 > 初中数学试题 >

(2008•常州)如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北...

(2008•常州)如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.
(1)快艇从港口B到小岛C需要多少时间?
(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?

manfen5.com 满分网
(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间. (2)过C作CH⊥OA,垂足为H.设快艇从C岛出发后最少要经过x小时才能和考察船在OA上的D处相遇,则CD=60x,OD=20(x+2).根据直角三角形的性质可解得x的值,从而求得快艇从小岛C出发后和考察船相遇的最短的时间. 【解析】 (1)由题意可知:∠CBO=60°,∠COB=30度. ∴∠BCO=90度. 在Rt△BCO中, ∵OB=120, ∴BC=60,OC=60. ∴快艇从港口B到小岛C的时间为:60÷60=1(小时). (2)设快艇从C岛出发后最少要经过x小时才能和考察船在 OA上的D处相遇,则CD=60x. 过点D作DE⊥CO于点E, ∵考察船与快艇是同时出发, ∵快艇从港口B到小岛C的时间是1小时,在小岛C用1小时装补给物资, ∴考察船从O到D行驶了(x+2)小时, ∴OD=20(x+2). 过C作CH⊥OA,垂足为H, 在△OHC中, ∵∠COH=30°,OB=120, ∴CO=60, ∴CH=30,OH=90. ∴DH=OH-OD=90-20(x+2)=50-20x. 在Rt△CHD中,CH2+DH2=CD2, ∴+(50-20x)2=(60x)2. 整理得:8x2+5x-13=0. 解得:x1=1,x2=-. ∵x>0, ∴x=1. 答:快艇从小岛C出发后最少需要1小时才能和考察船相遇.
复制答案
考点分析:
相关试题推荐
(2008•常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2008•常州)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.
(1)在所给网格中按下列要求画图:
①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);
②将四边形ABCD沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;
(2)写出点C″、D″的坐标;
(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.
查看答案
(2008•常州)已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.

manfen5.com 满分网 查看答案
(2008•常州)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.
求证:BC=DE.

manfen5.com 满分网 查看答案
(2008•常州)小敏和小李都想去看在我市举行的省乒乓球比赛,但俩人只有一张门票,小敏建议通过摸球来决定谁去观赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同),搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.