(2008•泸州)如图,已知二次函数y=ax
2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)0<k<2时,求四边形PCMB的面积s的最小值.
【参考公式:已知两点D(x
1,y
1),E(x
2,y
2),则线段DE的中点坐标为
】
考点分析:
相关试题推荐
(2008•泸州)如图,P
1(x
1,y
1),P
2(x
2,y
2),…P
n(x
n,y
n)在函数y=
(x>0)的图象上,△P
1OA
1,△P
2A
1A
2,△P
3A
2A
3,…△P
nA
n-1A
n都是等腰直角三角形,斜边OA
1、A
1A
2、A
2A
3,…A
n-1A
n都在x轴上
(1)求P
1的坐标;
(2)求y
1+y
2+y
3+…y
10的值.
查看答案
(2008•泸州)如图,在气象站台A的正西方向240km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心130km内的地方都要受到其影响.
(1)台风中心在移动过程中,与气象台A的最短距离是多少?
(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?
查看答案
(2008•泸州)如图,在平面直角坐标系中,点P(x,y)是第一象限直线y=-x+6上的点,点A(5,0),O是坐标原点,△PAO的面积为S.
(1)求S与x的函数关系式;
(2)当S=10时,求tan∠POA的值.
查看答案
(2008•泸州)某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:
方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;
方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.
你认为哪种方案获利最多,为什么?
查看答案
(2008•泸州)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:
(1)该班共有______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;
(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.
查看答案