连接AD、BC,由AB是圆O的直径,可证∠ADB=∠ACB=90°,可证Rt△ADB≌Rt△BCA,得到AD=BC,=,故∠BAC=∠BDC=∠3=∠4,即证△DEC是等腰三角形,又∠BEC=60°是△DEC的外角,所以∠BDC+∠3=∠BEC=60°,即∠3=30°,即tan∠ACD=tan∠3=tan30°=.
【解析】
连接AD、BC.
∵AB是圆O的直径,
∴∠ADB=∠ACB=90°.
在Rt△ADB与Rt△BCA中,
AB=AB,AC=BD,
∴Rt△ADB≌Rt△BCA,
∴AD=BC,=.
故∠BDC=∠BAC=∠3=∠4,
△DEC是等腰三角形,
∵∠BEC=60°是△DEC的外角,
∴∠BDC+∠3=∠BEC=60°,
∴∠3=30°,
∴tan∠ACD=tan∠3=tan30°=.