满分5 > 初中数学试题 >

(2008•南充)如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐...

(2008•南充)如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,manfen5.com 满分网),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

manfen5.com 满分网
(1)根据B点的坐标即可得出A点的坐标,也就知道了OA的长,可在直角三角形OAD中,根据OA的长和∠OAD的度数求出OD的长,即可得出D点的坐标,进而可用待定系数法求出直线AD的解析式. (2)本题的关键是求出C1的横坐标,可过C1作x轴的垂线,由于∠ADO=∠AOC1=60°,因此可得出∠C1DC=60°,因此可在构建的直角三角形中用BC的长和∠C1DC的度数来求出C1的坐标,进而可用待定系数法求出抛物线的解析式. (3)由于圆P与两坐标轴都相切,如果设P点的坐标为(x、y),则有|x|=|y|,进而可联立抛物线的解析式求出P点的坐标.也就得出了圆的半径的长. 【解析】 (1)由已知得 OA=,∠OAD=30度. ∴OD=OA•tan30°==1, ∴A(0,),D(1,0) 设直线AD的解析式为y=kx+b. 把A,D坐标代入上式得: , 解得:, 折痕AD所在的直线的解析式是y=-x+. (2)过C1作C1F⊥OC于点F, 由已知得∠ADO=∠ADO1=60°, ∴∠C1DC=60°. 又∵DC=3-1=2, ∴DC1=DC=2. ∴在Rt△C1DF中,C1F=DC1•sin∠C1DF=2×sin60°=. 则DF=DC1=1, ∴C1(2,),而已知C(3,0). 设经过三点O,C1,C的抛物线的解析式是y=ax2+bx+c,(a≠0). 把O,C1,C的坐标代入上式得:, 解得, ∴y=-x2+x为所求. (3)设圆心P(x,y),则当⊙P与两坐标轴都相切时,有y=±x. 由y=x,得-x2+x=x,解得x1=0(舍去),. 由y=-x,得-x2+x=-x解得x1=0(舍去),. ∴所求⊙P的半径R=3-或R=3+.
复制答案
考点分析:
相关试题推荐
(2008•南充)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
(2)当k=12时,请设计最省钱的购买方案.
查看答案
(2008•南充)如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.
(1)试问:CG是⊙O的切线吗?说明理由;
(2)请证明:E是OB的中点;
(3)若AB=8,求CD的长.

manfen5.com 满分网 查看答案
(2008•南充)如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.

manfen5.com 满分网 查看答案
(2008•南充)在“5•12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要整修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.
查看答案
(2008•南充)桌面上放有质地均匀、反面相同的3张卡片,正面分别标有数字1,2,3,这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出1张,记下卡片上的数字后仍反面朝上放回洗匀,乙再从中任意抽出1张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为4的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为4时,甲胜,反之则乙胜;若甲胜一次得6分,那么乙胜一次得多少分,这个游戏才对双方公平?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.