满分5 > 初中数学试题 >

(2008•天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角...

(2008•天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2
(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
(Ⅰ)考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了; (Ⅱ)还将△ACM沿直线CE对折,得△DCM,连DN,△GCM≌△ACM,然后由勾股定理即可证明. (Ⅰ)证明:∵将△ACM沿直线CE对折,得△DCM,连DN, ∴△DCM≌△ACM(1分) ∴CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A 又∵CA=CB, ∴CD=CB(2分), ∴∠DCN=∠ECF-∠DCM=45°-∠DCM ∠BCN=∠ACB-∠ECF-∠ACM =90°-45°-∠ACM=45°-∠ACM ∴∠DCN=∠BCN (3分) 又∵CN=CN, ∴△CDN≌△CBN.(4分) ∴DN=BN,∠CDN=∠B. ∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.(5分) ∴在Rt△MDN中,由勾股定理 ∴MN2=DM2+DN2,即MN2=AM2+BN2.(6分) (Ⅱ)【解析】 关系式MN2=AM2+BN2仍然成立.(7分) 证明:∵将△ACM沿直线CE对折,得△GCM,连GN, ∴△GCM≌△ACM.(8分) ∴CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM, 又∵CA=CB,得CG=CB. ∵∠GCN=∠GCM+∠ECF=∠GCM+45° ∴∠BCN=∠ACB-∠ACN=90°-(∠ECF-∠ACM)=45°+∠ACM 得∠GCN=∠BCN. (8分) 又∵CN=CN, ∴△CGN≌△CBN. ∴GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°-∠CAB=135°, ∴∠MGN=∠CGM-∠CGN=135°-45°=90°, ∴在Rt△MGN中,由勾股定理, ∴MN2=GM2+GN2,即MN2=AM2+BN2.(9分)
复制答案
考点分析:
相关试题推荐
(2008•天津)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)
(Ⅱ)列出方程(组),并求出问题的解.
 速度(千米/时)所用时间(时)所走的路程(千米)
骑自行车X 10
乘汽车  10

查看答案
(2009•柳州)如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
(2008•天津)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).
请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).

manfen5.com 满分网 查看答案
(2008•天津)如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,
(Ⅰ)求∠AOD的度数;
(Ⅱ)若AO=8cm,DO=6cm,求OE的长.

manfen5.com 满分网 查看答案
(2008•天津)已知点P(2,2)在反比例函数y=manfen5.com 满分网(k≠0)的图象上,
(Ⅰ)当x=-3时,求y的值;
(Ⅱ)当1<x<3时,求y的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.