由定义1知:只有四边形的四个内角平分线相交于同一点时,四边形才一定有内切圆.因此可沿筝形的对称轴将筝形分成两部分,然后用全等三角形证明筝形的四个内角平分线相交于同一点即可.
【解析】
如图;
四边形ABCD中,AB=AD,BC=CD;
由定义2可知:四边形ABCD为筝形;
连接AC;
∵AB=AD,BC=CD,AC=AC;
∴△ABC≌△ADC;
∴∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC;
即AC平分∠BCD和∠BAD;
作∠ABC的角平分线交AC于E,作∠ADC的角平分线交AC于F;
∵∠ABC=∠ADC,
∴∠ABE=∠ADF;
又AB=AD,∠BAC=∠DAC;
∴△ABE≌△ADF;
∴AE=AF,即E、F重合;
因此四边形ABCD的四个内角平分线相交于同一点,由角平分线的性质可知:这个交点到四边形ABCD的四边距离都相等,因此筝形一定有内切圆.