满分5 > 初中数学试题 >

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=...

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式. (2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标. ②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值. (3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论: ①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标. ②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可. (本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可). 【解析】 (1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x. (2)①∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m). ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2). ∴点P的坐标是(2,m2-2m+4). ②∵PB=m2-2m+4=(m-1)2+3, 又∵0≤m≤2, ∴当m=1时,PB最短. (3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2 即y=x2-2x+3. 假设在抛物线上存在点Q,使S△QMA=S△PMA. 设点Q的坐标为(x,x2-2x+3). ①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C, ∵PB=3,AB=4, ∴AP=1, ∴OC=1, ∴C点的坐标是(0,-1). ∵点P的坐标是(2,3), ∴直线PC的函数解析式为y=2x-1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x-1上. ∴x2-2x+3=2x-1. 解得x1=2,x2=2, 即点Q(2,3). ∴点Q与点P重合. ∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等. ②当点Q落在直线OA的上方时, 作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E, ∵AP=1, ∴EO=DA=1, ∴E、D的坐标分别是(0,1),(2,5), ∴直线DE函数解析式为y=2x+1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x+1上. ∴x2-2x+3=2x+1. 解得:x1=2+,x2=2-. 代入y=2x+1得:y1=5+2,y2=5-2. ∴此时抛物线上存在点Q1(2+,5+2),Q2(2-,5-2) 使△QMA与△PMA的面积相等. 综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2-,5-2),Q3(2,3),使△QMA与△PMA的面积相等.
复制答案
考点分析:
相关试题推荐
(2008•丽水)如图是某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过30m的区域划分为A票区,B票区如图所示,剩下的为C票区.(π取3)
(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要作出图形,保留作图痕迹,不要求写作法);
(2)如果每个座位所占的平均面积是0.8平方米,请估算A票区有多少个座位.

manfen5.com 满分网 查看答案
(2008•丽水)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.
(1)甲生的方案:如图1,将视力表挂在墙ABEF和墙ADGF的夹角处,被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由.
(2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF______米处.
(3)丙生的方案:如图3,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的长是3.5cm,那么小视力表中相应“E”的长是多少cm?
manfen5.com 满分网
查看答案
(2008•丽水)为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
线路弯路(宁波-杭州-上海)直路(宁波-跨海大桥-上海)
路程316公里196公里
过路费140元180元
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间;
(2)若小车每公里的油耗为x升,汽油价格为5.00元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费);
(3)据杭州湾跨海大桥管理部门统计:从宁波经跨海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油?

manfen5.com 满分网 查看答案
(2010•新疆)四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?
查看答案
(2008•丽水)已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.
(1)求从箱中随机取出一个白球的概率是______
(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是manfen5.com 满分网,则y与x的函数解析式为______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.