(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x
2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
(2008•丽水)如图是某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过30m的区域划分为A票区,B票区如图所示,剩下的为C票区.(π取3)
(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要作出图形,保留作图痕迹,不要求写作法);
(2)如果每个座位所占的平均面积是0.8平方米,请估算A票区有多少个座位.
查看答案
(2008•丽水)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.
(1)甲生的方案:如图1,将视力表挂在墙ABEF和墙ADGF的夹角处,被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由.
(2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF______米处.
(3)丙生的方案:如图3,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的长是3.5cm,那么小视力表中相应“E”的长是多少cm?
查看答案
(2008•丽水)为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
线路 | 弯路(宁波-杭州-上海) | 直路(宁波-跨海大桥-上海) |
路程 | 316公里 | 196公里 |
过路费 | 140元 | 180元 |
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间;
(2)若小车每公里的油耗为x升,汽油价格为5.00元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费);
(3)据杭州湾跨海大桥管理部门统计:从宁波经跨海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油?
查看答案
(2010•新疆)四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?
查看答案
(2008•丽水)已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.
(1)求从箱中随机取出一个白球的概率是______;
(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是
,则y与x的函数解析式为______.
查看答案