满分5 > 初中数学试题 >

(2007•长春)如图,在平面直角坐标系中,直线y=-x+b(b>0)分别交x轴...

(2007•长春)如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)当b值由小到大变化时,求S与b的函数关系式.
(3)若在直线y=-manfen5.com 满分网x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.
(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.

manfen5.com 满分网
(1)因为以M(4,0),N(8,0)为斜边端点作的等腰直角三角形PMN,点P在第一象限,所以可作PK⊥MN于K,则PK=KM=NM=2,进而可求KO=6,所以P(6,2); (2)需分情况讨论:当0<b≤2时,S=0;当2<b≤3时,重合部分是一个等腰直角三角形,可设AC交PM于H,AM=HA=2b-4,所以S=(2b-4)2;当3<b<4时,重合部分是一个四边形,因此可设AC交PN于H,四边形的面积=三角形PMN的面积-三角形HAN的面积,因为NA=HA=8-2b,所以S=-2(4-b)2+4,当b≥4时,重合部分就是直角三角形PMN,所以S=4. (3)因为直线y=-x+b(b>0)上存在点Q,使∠OQM等于90°,利用90°的圆周角对的弦是直径,所以以OM为直径作圆,当直线y=-x+b(b>0)与此圆相切时,求得的就是b的最大值,而此时b=+1; (4)因为△PCD为等腰三角形,所以需分情况讨论,当PC=PD时,b=4.当PC=CD时,b1=2(舍),b2=5.当PD=CD时,b=8±2. 【解析】 (1)作PK⊥MN于K,则PK=KM=NM=2, ∴KO=6, ∴P(6,2); (2)①当点A落在线段OM上(可与点M重合)时,如图(一),此时0<b≤2,S=0; ②当点A落在线段AK上(可与点K重合)时,如图(二),此时2<b≤3,设AC交PM于H,MA=AH=2b-4, ∴S=(2b-4)2=2b2-8b+8, ③当点A落在线段KN上(可与点N重合)时,如图(三),此时3<b≤4,设AC交PN于H,AN=AH=8-2b, ∴S=S△PMN-S△ANH=4-2(4-b)2=-2b2+16b-28, ④当点A落在线段MN的延长线上时,b>4,如图(四),S=4; (3)以OM为直径作圆,当直线y=-x+b(b>0)与圆相切时,b=+1,如图(五); 当b≥4时,重合部分是△PMN,S=4 设Q(x,b-x),因为∠OQM=90°,O(0,0),M(4,0)所以OQ2+QM2=OM2, 即[x2+(b-x)2]+[(x-4)2+(b-x)2]=42, 整理得x2-(2b+8)x+2b2=0,x2-(b+4)x+b2=0, 根据题意这个方程必须有解,也就是判别式△≥0,即(b+4)2-5b2≥0,-b2+2b+4≥0,b2-2b-4≤0,可以解得 1-≤b≤1+,由于b>0,所以0<b≤1+. 故0<b≤+1; (4)b的值为4,5,. ∵点C、D的坐标分别为(2b,b),(b,b) 当PC=PD时,b=4; 当PC=CD时,b1=2(P、C、D三点共线,舍去),b2=5; 当PD=CD时,b=8±2.
复制答案
考点分析:
相关试题推荐
(2009•安徽)已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.manfen5.com 满分网
查看答案
(2010•密云县)附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网 查看答案
(2009•抚顺)如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试判断四边形AEDF的形状,并证明;
②若AC=8,CD=4,求四边形AEDF的周长和BD的长.

manfen5.com 满分网 查看答案
(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
(2009•济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
职工
月销售件数(件)200180
月工资(元)18001700
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.