(2009•崇文区一模)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.
(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是______;此时
=______;
(2)如图2,点M、N边AB、AC上,且当DM≠DN时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;
(3)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q=______(用x、L表示).
查看答案
(2009•崇文区一模)如图,抛物线y=ax
2+bx-3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.
(I)求抛物线的解析式;
(II)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形为直角三角形?若存在,求出P点坐标;若不存在,请说明理由;
(III)直线
交y轴于D点,E为抛物线顶点.若∠DBC=α,∠CBE=β,求α-β的值.
查看答案