满分5 > 初中数学试题 >

(2007•双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥...

manfen5.com 满分网(2007•双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且manfen5.com 满分网,求这时点P的坐标.
(1)过B作BQ⊥OA于Q易得∠COA=∠BAQ=60°,在Rt△BQA中,根据三角函数的定义可得QB的长,进而可得OQ的长;即可得B的坐标; (2)分点P在x正半轴上与x负半轴上上两种情况讨论,结合等腰三角形的性质,可得OP、OC的长,进而可得答案; (3)根据题意易得△COP∽△PAD,进而可得比例关系,代入数据可得答案. 【解析】 (1)过B作BQ⊥OA于Q,则∠COA=∠BAQ=60°, 在Rt△BQA中,QB=ABsin60°=, , ∴OQ=OA-QA=7-2=5. ∴B(5,). (2)①当OC=OP时,若点P在x正半轴上, ∵∠COA=60°,△OCP为等腰三角形, ∴△OCP是等边三角形. ∴OP=OC=CP=4. ∴P(4,0). 若点P在x负半轴上, ∵∠COA=60°, ∴∠COP=120°. ∴△OCP为顶角120°的等腰三角形. ∴OP=OC=4. ∴P(-4,0) ∴点P的坐标为(4,0)或(-4,0). ②当OC=CP时,由题意可得C的横坐标为:4×cos60°=2, ∴P点坐标为(4,0) ③当OP=CP时, ∵∠COA=60°, ∴△OPC是等边三角形,同①可得出P(4,0). 综上可得点P的坐标为(4,0)或(-4,0). (3)∵∠CPD=∠OAB=∠COP=60°, ∴∠OPC+∠DPA=120°. 又∵∠PDA+∠DPA=120°, ∴∠OPC=∠PDA. ∵∠COP=∠A=60°, ∴△COP∽△PAD. ∴. ∵,AB=4, ∴BD=, AD=. 即. ∴7OP-OP2=6得OP=1或6. ∴P点坐标为(1,0)或(6,0).
复制答案
考点分析:
相关试题推荐
(2007•乌兰察布)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?
查看答案
(2009•大兴区二模)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段______
(2)①在损矩形ABCD内是否存在点O,使得A、B、C、D四个点都在以O为圆心的同一圆上?如果有,请指出点O的具体位置;
②如图,直接写出符合损矩形ABCD的两个结论(不能再添加任何线段或点).

manfen5.com 满分网 查看答案
(2008•庐阳区)去年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)在这次被抽查形体测评的学生中,坐姿不良的学生有______人,占抽查人数的百分比为______,这次抽查一共抽查了______名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有______人;
(2)请将两幅统计图补充完整;
(3)根据统计结果,请你简单谈谈自己的看法.
manfen5.com 满分网
查看答案
(2007•韶关)如图,AB是半⊙O的直径,弦AC与AB成30°的角,AC=CD.
(1)求证:CD是半⊙O的切线;
(2)若OA=2,求AC的长.

manfen5.com 满分网 查看答案
(2009•大兴区二模)将正面分别标有数字2,3,4,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求这张卡片上的数字为偶数的概率;
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“24”的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.