满分5 > 初中数学试题 >

(2009•东城区一模)请阅读下列材料: 圆内的两条相交弦,被交点分成的两条线段...

(2009•东城区一模)请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.
manfen5.com 满分网manfen5.com 满分网
已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:manfen5.com 满分网的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:manfen5.com 满分网的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:manfen5.com 满分网的值,并给出证明.
(1)由于AC过圆心,那么Q,A重合,R,C重合,可根据OP和半径的长求出PA,PC的长,即PQ,PR的长.由此可得出所求的结论; (2)连接OA,不难得出OA∥PQ,那么可得出∠OAP=∠APQ,可先在直角三角形OAP中,求出∠OAP的度数和AP的长,进而可在直角三角形APQ中求出PQ的长,同理可求出PR的长,即可求出所求的结论;(本题还可通过证△ADP和△PAQ相似,得出的值,同理可连接CD得出的值) (3)本题要通过相似三角形来求解.过点A作直径交⊙O于点E,连接EC,通过相似三角形△AEC∽△PAQ,得出关于AC,PQ,AE,AP的比例关系式,同理可求出AC,PR,AE,PC的比例关系式,两式联立可得出的表达式,然后根据相交弦定理即可证得所求的结论. (第二种证法和(2)的第二种求法完全相同.) 【解析】 (1)AC过圆心O,且m,n分别切⊙O于点A,C, ∴AC⊥m于点A,AC⊥n于点C. ∴Q与A重合,R与C重合. ∵OP=1,AC=4, ∴+=1+=. (2)连接OA, ∵OP⊥AC于点P,且OP=1,OA=2, ∴∠OAP=30°. ∴AP=. ∵OA⊥直线m,PQ⊥直线m, ∴OA∥PQ,∠PQA=90°. ∴∠APQ=∠OAP=30°. ∴AP=. ∵OA⊥直线m,PQ⊥F直线m, ∴OA∥PQ,∠PQA=90°. ∴∠APQ=∠OAP=30°. 在Rt△AQP中,PQ=,同理,PR=, ∴. (3)猜想. 证明:过点A作直径交⊙O于点E,连接EC, ∴∠ECA=90°. ∵AE⊥直线m,PQ⊥直线, ∴AE∥PQ且∠PQA=90°. ∴∠EAC=∠APQ. ∴△AEC∽△PAQ. ∴① 同理可得:② ①+②,得: +=+ ∴=() =•=. 过P作直径交⊙O于M,N, 根据阅读材料可知:AP•PC=PM•PN=3, ∴=.
复制答案
考点分析:
相关试题推荐
(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2012•同安区一模)已知:关于x的一元二次方程x2-2(2m-3)x+4m2-14m+8=0,
(1)若m>0,求证:方程有两个不相等的实数根;
(2)若12<m<40的整数,且方程有两个整数根,求m的值.
查看答案
(2011•玉溪一模)如图,反比例函数manfen5.com 满分网的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.
(1)设矩形OABC的对角线交于点E,求出E点的坐标;
(2)若直线y=2x+m平分矩形OABC面积,求m的值.

manfen5.com 满分网 查看答案
(2010•红桥区二模)已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)若PC是圆O的切线,BC=8,求DE的长.

manfen5.com 满分网 查看答案
(2009•东城区一模)某商场用36万元购进A,B两种商品,销售完后共获利6万元,其进价和售价如下表:
         A       B
进价(元/件)      1200     1000
售价(元/件)      1380     1200
求该商场购进A,B两种商品各多少件.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.