满分5 > 初中数学试题 >

(2012•宁波模拟)在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴...

(2012•宁波模拟)在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+bx+c与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式;
(2)若点E在第一象限内的此抛物线上,且OE⊥BC于D,求点E的坐标;
(3)在抛物线的对称轴上是否存在一点P,使线段PA与PE之差的值最大?若存在,请求出这个最大值和点P的坐标;若不存在,请说明理由.
(1)已知了OA、OC的长,即可得出A、C两点的坐标,然后将两点坐标代入抛物线中即可求出抛物线的解析式. (2)不难得出B点坐标为(3,0),因此△OBC是等腰直角三角形,如果OE⊥BC,那么E点必为直线y=x与抛物线的交点,由此可求出E点的坐标. (3)由于B点就是A点关于对称轴的对称点,因此只需求出直线BE与抛物线对称轴的交点即可得出P点的坐标.那么PA、PE的差的最大值就是BE的长,可根据BE的坐标来求出这个最大值. 【解析】 (1)根据题意,得A(-2,0)、C(0,3). ∵抛物线过A(-2,0)、C(0,3)两点, ∴ 解得 ∴抛物线的解析式为y=-x2+x+3. (2)由y=-x2+x+3可得B点坐标为(3,0). ∴OB=OC=3. ∵OD⊥BC, ∴OD平分∠BOC.(4分) ∴点E的横坐标等于纵坐标. 设E(x,y). 解方程组 得, ∴点E的坐标为(2,2). (3)在抛物线的对称轴上存在一点P, 使线段PA与PE之差的值最大. 当点P为抛物线的对称轴和BE所在的直线y=-2x+6的交点时, PA-PE=PB-PE=BE,其值最大. BE==.(6分) 由 解得 ∴点P的坐标为(,5). ∴点P为(,5)时PA-PE的最大值为.
复制答案
考点分析:
相关试题推荐
(2005•福州)已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角梯形ABCD向左翻折180°,翻折一次得图形①,翻折二次得图形②,如此翻折下去.
(1)将直角梯形ABCD向左翻折二次,如果此时等边三角形的边长a≥2cm,这时两图形重叠部分的面积是多少?
(2)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积,这时等边三角形的边长a至少应为多少?
(3)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积的一半,这时等边三角形的边长应为多少?

manfen5.com 满分网 查看答案
(2009•门头沟区二模)列方程或方程组解应用题:某市在旧城改造过程中,需要整修一段全长2400米的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.
查看答案
(2012•宁波模拟)某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随机调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元频 数频 率
1000<x<120030.060
1200<x<1400120.240
1400<x<1600180.360
1600<x<18000.200
1800<x<20005
2000<x<220020.040
合计501.000
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?

manfen5.com 满分网 查看答案
(2009•门头沟区二模)如图,从山顶A处看到地面C点的俯角为60°,看到地面D点的俯角为45°,测得CD=20米,求山AB的高(结果精确到0.1米,参考数据manfen5.com 满分网).

manfen5.com 满分网 查看答案
(2012•宁波模拟)已知:如图,AB是⊙O的直径,C是⊙O上的一点,且∠BCE=∠CAB,CE交AB的延长线于点E,AD⊥AB,交EC的延长线于点D.
(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若CE=3,BE=2,求CD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.