满分5 > 初中数学试题 >

(2012•宁波模拟)如图,在平面直角坐标系xOy中,已知点A(4,0),点B(...

(2012•宁波模拟)如图,在平面直角坐标系xOy中,已知点A(4,0),点B(0,3),点P从点B出发沿BA方向向点A匀速运动,速度为每秒1个单位长度,点Q从点A出发沿AO方向向点O匀速运动,速度为每秒2个单位长度,连接PQ.若设运动的时间为t秒(0<t<2).
(1)求直线AB的解析式;
(2)设△AQP的面积为y,求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把△AOB的周长和面积同时平分?若存在,请求出此时t的值;若不存在,请说明理由;
(4)连接PO,并把△PQO沿QO翻折,得到四边形PQP′O,那么是否存在某一时刻t,使四边形PQP′O为菱形?若存在,请求出此时点Q的坐标和菱形的边长;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了A、B两点的坐标,可用待定系数法求出直线AB的解析式. (2)三角形APQ中,底边AQ的长易知,关键是求P点纵坐标的值;过P作PM⊥OA于M,通过构建的相似三角形得出的成比例线段,可求出PM的长.进而可根据三角形的面积公式求出y,t的函数关系式. (3)可用分析法求解.先假设存在这样的t值,由于此时PQ将三角形ABO的周长平分,因此BP+BO+OQ=AP+AQ,据此可求出t的值,然后将t的值,代入(2)的函数关系式中,看此时三角形APQ的面积是否等于三角形AOB的面积的一半即可. (4)如果四边形OPQP′是菱形,那么需要满足的条件是OP=PQ,那么PM垂直平分OQ,此时QM=OQ,可借助OA的长来求t的值.过P作PN⊥OB于N,那么三角形BNP和三角形BOA相似,可求得PN的表达式,也就求出了QM,MO的表达式,可根据OA=OM+QM+AQ来求出此时t的值.进而可求出菱形的边长. 【解析】 (1)设直线AB的解析式为y=kx+b, ∴ 解得, ∴直线AB的解析式是y=-x+3. (2)在Rt△AOB中,AB==5, 依题意,得BP=t,AP=5-t,AQ=2t, 过点P作PM⊥AO于M, ∵△APM∽△ABO, ∴, ∴, ∴PM=3-t, ∴y=AQ•PM=•2t•(3-t)=-t2+3t. (3)不存在某一时刻t,使线段PQ恰好把△AOB的周长和面积同时平分, 若PQ把△AOB周长平分,则AP+AQ=BP+BO+OQ, ∴(5-t)+2t=t+3+(4-2t), 解得t=1. 若PQ把△AOB面积平分,则S△APQ=S△AOB, ∴-t2+3t=3, ∵t=1代入上面方程不成立, ∴不存在某一时刻t,使线段PQ把△AOB的周长和面积同时平分. (4)存在某一时刻t,使四边形PQP'O为菱形, 过点P作PN⊥BO于N, 若四边形PQP′O是菱形,则有PQ=PO, ∵PM⊥AO于M, ∴QM=OM, ∵PN⊥BO于N,可得△PBN∽△ABO, ∴, ∴, ∴PN=t, ∴QM=OM=t, ∴t+t+2t=4, ∴t=, ∴当t=时,四边形PQP′O是菱形, ∴OQ=4-2t=, ∴点Q的坐标是(,0). ∵PM=3-t=,OM=t=, 在Rt△PMO中,PO===, ∴菱形PQP′O的边长为.
复制答案
考点分析:
相关试题推荐
(2009•门头沟区二模)在矩形ABCD中,点E是AD边上一点,连接BE,且BE=2AE,BD是∠EBC的平分线.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+manfen5.com 满分网PQ;
(2)当点P在线段ED的延长线上时(如图2),请你猜想BE,PD,manfen5.com 满分网PQ三者之间的数量关系(直接写出结果,不需说明理由);
(3)当点P运动到线段ED的中点时(如图3),连接QC,过点P作PF⊥QC,垂足为F,PF交BD于点G.若BC=12,求线段PG的长.
manfen5.com 满分网
查看答案
(2012•宁波模拟)在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+bx+c与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式;
(2)若点E在第一象限内的此抛物线上,且OE⊥BC于D,求点E的坐标;
(3)在抛物线的对称轴上是否存在一点P,使线段PA与PE之差的值最大?若存在,请求出这个最大值和点P的坐标;若不存在,请说明理由.
查看答案
(2005•福州)已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角梯形ABCD向左翻折180°,翻折一次得图形①,翻折二次得图形②,如此翻折下去.
(1)将直角梯形ABCD向左翻折二次,如果此时等边三角形的边长a≥2cm,这时两图形重叠部分的面积是多少?
(2)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积,这时等边三角形的边长a至少应为多少?
(3)将直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形ABCD的面积的一半,这时等边三角形的边长应为多少?

manfen5.com 满分网 查看答案
(2009•门头沟区二模)列方程或方程组解应用题:某市在旧城改造过程中,需要整修一段全长2400米的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.
查看答案
(2012•宁波模拟)某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随机调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元频 数频 率
1000<x<120030.060
1200<x<1400120.240
1400<x<1600180.360
1600<x<18000.200
1800<x<20005
2000<x<220020.040
合计501.000
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.