满分5 > 初中数学试题 >

(2009•门头沟区一模)如图1,在△ACB和△AED中,AC=BC,AE=DE...

(2009•门头沟区一模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);
(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.
manfen5.com 满分网
(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF; (2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了; (3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN=AD,EC=MF=AB,我们只要再证得两对应边的夹角相等即可得出全等的结论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同. 【解析】 (1)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE; (2)(1)中的结论仍然成立. 如图2,连接CF,延长EF交CB于点G, ∵∠ACB=∠AED=90°, ∴DE∥BC, ∴∠EDF=∠GBF, 又∵∠EFD=∠GFB,DF=BF, ∴△EDF≌△GBF, ∴EF=GF,BG=DE=AE, ∵AC=BC, ∴CE=CG, ∴∠EFC=90°,CF=EF, ∴△CEF为等腰直角三角形, ∴∠CEF=45度, ∴CE=FE; (3)(1)中的结论仍然成立. 如图3,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF, ∵DF=BF, ∴FM∥AB,且FM=, ∵AE=DE,∠AED=90°, ∴AM=EM,∠AME=90°, ∵CA=CB,∠ACB=90° ∴,∠ANC=90°, ∴MF∥AN,FM=AN=CN, ∴四边形MFNA为平行四边形, ∴FN=AM=EM,∠AMF=∠FNA, ∴∠EMF=∠FNC, ∴△EMF≌△FNC, ∴FE=CF,∠EFM=∠FCN, 由MF∥AN,∠ANC=90°,可得∠CPF=90°, ∴∠FCN+∠PFC=90°, ∴∠EFM+∠PFC=90°, ∴∠EFC=90°, ∴△CEF为等腰直角三角形, ∴∠CEF=45°, ∴CE=FE.
复制答案
考点分析:
相关试题推荐
(2009•门头沟区一模)在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,且点B的坐标为(1,0),点C的坐标为(0,3).
(1)求抛物线及直线AC的解析式;
(2)E、F是线段AC上的两点,且∠AEO=∠ABC,过点F作与y轴平行的直线交抛物线于点M,交x轴于点N.当MF=DE时,在x轴上是否存在点P,使得以点P、A、F、M为顶点的四边形是梯形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q是位于抛物线对称轴左侧图象上的一点,试比较锐角∠QCO与∠BCO的大小(直接写出结果,不要求写出求解过程,但要写出此时点Q的横坐标x的取值范围).
查看答案
(2009•门头沟区一模)已知以x为自变量的二次函数y=x2+2mx+m-7.
(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;
(2)若二次函数的图象与x轴的两个交点在点(1,0)的两侧,关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,且m为整数,求m的值;
(3)在(2)的条件下,关于x的另一方程x2+2(a+m)x+2a-m2+6 m-4=0有大于0且小于5的实数根,求a的整数值.
查看答案
(2009•门头沟区一模)如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.
(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1,图2,图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);
(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;
(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.
manfen5.com 满分网
查看答案
(2009•门头沟区一模)在学校开展的为偏远贫困地区的少年儿童捐献文具的活动中,甲、乙两班共捐献文具260件,已知甲班有40人参加了此次活动,乙班有35人参加了此次活动,且乙班人均捐献文具的件数是甲班人均捐献文具件数的manfen5.com 满分网倍,问甲、乙两班各捐献文具多少件?
查看答案
(2009•门头沟区一模)阅读对人成长的影响是巨大的,联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:
manfen5.com 满分网manfen5.com 满分网
一个学期平均一天阅读课外书籍所用时间统计表
时间(分钟)20406080100120
人数(名)433115542
请你根据以上信息解答下列问题:
(1)补全图1,图2;
(2)这100名学生一个学期平均每人阅读课外书籍多少本若该校共有3000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?
(3)根据统计图和统计表,请你对该校学生阅读课外书籍的情况,谈谈你的看法.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.