满分5 > 初中数学试题 >

(2009•临沂)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点...

(2009•临沂)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网
(1)已知抛物线经过A(4,0),B(1,0),可设抛物线解析式的交点式,再把C(0,-2)代入即可; (2)∵△OAC是直角三角形,以A,P,M为顶点的三角形与其相似,由于点P可能在x轴的上方,或者下方,分三种情况,分别用相似比解答; (3)过D作y轴的平行线交AC于E,将△DCA分割成两个三角形△CDE,△ADE,它们的底相同,为DE,高的和为4,就可以表示它们的面积和,即△DCA的面积,运用代数式的变形求最大值. 【解析】 (1)∵该抛物线过点C(0,-2), 设该抛物线的解析式为y=ax2+bx-2. 将A(4,0),B(1,0)代入, 得, 解得, ∴此抛物线的解析式为y=-x2+x-2. (2)存在. 如图,设P点的横坐标为m, 则点P的纵坐标为, 当1<m<4时, AM=4-m,PM=, 又∵∠COA=∠PMA=90°, ∴①当==2时,△APM∽△ACO, ∴=2,即|4-m|=2(), ∴4-m=m2+5m-4, ∴m2-6m+8=0, ∴(m-2)(m-4)=0, 解得:m1=2,m2=4(舍去) ∴P(2,1) ②当,△APM∽△CAO, 那么有:2|4-m|=, ∴2(4-m)=-m2+m-2, ∴m2-9m+20=0, ∴(m-4)(m-5)=0, 解得:m1=4(舍去),m2=5(舍去), ∴当1<m<4时,P(2,1), 类似地可求出当m>4时,P(5,-2), 当m<1时,P(-3,-14), 当P,C重合时,△APM≌△ACO,P(0,-2). 综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2); (3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为-t2+t-2. 过D作y轴的平行线交AC于E. 由题意可求得直线AC的解析式为y=x-2. ∴E点的坐标为(t,t-2). ∴DE=-t2+t-2-(t-2)=-t2+2t. ∴S△DAC=×(-t2+2t)×4=-t2+4t=-(t-2)2+4. ∴当t=2时,△DAC面积最大. ∴D(2,1).
复制答案
考点分析:
相关试题推荐
(2009•山西)如图,已知直线l1:y=manfen5.com 满分网x+manfen5.com 满分网与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

manfen5.com 满分网 查看答案
(2009•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.
(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?

manfen5.com 满分网 查看答案
(2009•清远)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
(2009•娄底)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

manfen5.com 满分网 查看答案
(2010•遵义)解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.