满分5 > 初中数学试题 >

(2007•中山)如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,...

(2007•中山)如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=manfen5.com 满分网
(1)求点M离地面AC的高度BM(单位:厘米);
(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘
manfen5.com 满分网米).
(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα==,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值; (2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,又因为sinα==,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11-3=8,利用勾股定理即可求出FM=10个单位. 【解析】 过M作与AC平行的直线,与OA、FC分别相交于H、N. (1)在Rt△OHM中,∠OHM=90°,OM=5, HM=OM×sinα=3, 所以OH=4, MB=HA=5-4=1, 1×5=5cm. 所以铁环钩离地面的高度为5cm; (2)∵铁环钩与铁环相切, ∴∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α, ∴=sinα=, ∴FN=FM, 在Rt△FMN中,∠FNM=90°,MN=BC=AC-AB=11-3=8. ∵FM2=FN2+MN2, 即FM2=(FM)2+82, 解得:FM=10, 10×5=50(cm). ∴铁环钩的长度FM为50cm.
复制答案
考点分析:
相关试题推荐
(2006•十堰)在△ABC中,∠C=90°,D是边AB上一点(不与点A,B重合),过点D作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有( )
A.1条
B.2条
C.3条
D.4条
查看答案
(2005•吉林)下列图形中,不是正方体的展开图的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
(2004•北碚区)如图,点P按A⇒B⇒C⇒M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
(2013•静海县一模)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )
manfen5.com 满分网
A.4cm
B.6cm
C.8cm
D.10cm
查看答案
下列四个命题:①一组对应角都是60°的两个等腰三角形全等;②顶角和底边对应相等的两个等腰三角形全等;③等腰三角形一腰上的高等于腰长的一半则其一个底角的度数是75°;④有一腰和一腰上的高对应相等的两个等腰三角形全等,其中不正确的命题的个数是( )
A.4
B.3
C.2
D.1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.