满分5 > 初中数学试题 >

(2006•重庆)如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=...

(2006•重庆)如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网
(1)此题要证明DC=BC不能用全等三角形的性质,利用tan∠ADC=2求出BC然后再判定相等; (2)容易证明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,这样容易证明△ECF是等腰直角三角形; (3)由∠BEC=135°得∠BEF=90°,这样求sin∠BFE,然后利用已知条件就可以求出它的值了. (1)证明:过A作DC的垂线AM交DC于M,则AM=BC=2. 又tan∠ADC=2, ∴DM==1, 即DC=BC; (2)【解析】 等腰直角三角形. 证明:因为DE=BF,∠EDC=∠FBC,DC=BC, ∴△DEC≌△BFC, ∴CE=CF,∠ECD=∠FCB, ∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°, 即△ECF是等腰直角三角形; (3)【解析】 设BE=k,则CE=CF=2k, ∴EF=2k, ∵∠BEC=135°,又∠CEF=45°, ∴∠BEF=90°, 所以BF==3k, 所以sin∠BFE==.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示.EG∥AF,请你在下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题.①AB=AC;②DE=DF;③BE=CF.
(1)写出一个真命题,已知:EG∥AF,______=____________=______
求证:______=______并证明.
(2)再写出一个真命题(不要求证明).
查看答案
在平面直角坐标系中,已知点A(1,6),B(-2,3),c(3,2).
(1)在平面直角坐标系中描出点A、B、C;
(2)根据你所学过的函数类型,探究这三个点会同时在哪种函数的图象上,画出你探究的图象的草图;
(3)求出(2)中你探究的图象关系式,并说明该函数的图象一定过这三点;
(4)求出(3)中你探究的函数的对称轴,并说明x取何值时,函数值y随x的增大而减小.
查看答案
在学校举办的游艺活动中,数学俱乐部办了个掷骰子的游戏.玩这个游戏要买2元一张的票.一个游戏者掷一次骰子,如果掷到6,游戏者得到8元奖品.请分析俱乐部能从这种游戏中赢利吗?
查看答案
(2008•青岛)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:
manfen5.com 满分网manfen5.com 满分网
解答下列问题:
(1)该市共抽取了多少名九年级学生;
(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人;
(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)
查看答案
解不等式组manfen5.com 满分网把解集在数轴上表示出来,并求出不等式组的整数解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.