满分5 > 初中数学试题 >

(2009•漳州)几何模型: 条件:如下图,A、B是直线l同旁的两个定点. 问题...

(2009•漳州)几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
manfen5.com 满分网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
(1)由题意易得PB+PE=PD+PE=DE,在△ADE中,根据勾股定理求得即可; (2)作A关于OB的对称点A′,连接A′C,交OB于P,求A′C的长,即是PA+PC的最小值; (3)作出点P关于直线OA的对称点M,关于直线OB的对称点N,连接MN,它分别与OA,OB的交点Q、R,这时三角形PEF的周长=MN,只要求MN的长就行了. 【解析】 (1)∵四边形ABCD是正方形, ∴AC垂直平分BD, ∴PB=PD, 由题意易得:PB+PE=PD+PE=DE, 在△ADE中,根据勾股定理得,DE=; (2)作A关于OB的对称点A′,连接A′C,交OB于P, PA+PC的最小值即为A′C的长, ∵∠AOC=60° ∴∠A′OC=120° 作OD⊥A′C于D,则∠A′OD=60° ∵OA′=OA=2 ∴A′D= ∴; (3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN. 由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB, ∴∠MON=2∠AOB=2×45°=90°, 在Rt△MON中,MN===10. 即△PQR周长的最小值等于10.
复制答案
考点分析:
相关试题推荐
为了了解延庆的旅游情况,小明收集了延庆县2007至2009年每年的旅游收入及旅游人数(其中缺少2009年入境旅游人数)的有关数据,整理并分别绘成图1,图2.
manfen5.com 满分网
根据上述信息,回答下列问题:
(1)请你根据以上的信息补全旅游收入表(请把结果填在答题卡上),并计算该地区2007至2009年三年的年旅游收入的平均数是______亿元;
(2)据了解,该地区2008年、2009年旅游人数的年增长率相同,那么2009年旅游人数是______万;并根据以上的信息,补全图2;
manfen5.com 满分网
(3)结合统计图和统计表,给县旅游局提一点积极的意见或建议.
查看答案
(2010•锦州)如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E,∠BDC=30°,AD=3,求CD的长.

manfen5.com 满分网 查看答案
列方程或方程组解应用题:4月3日是首都第26个全民义务植树日,全民义务植树运动开展以来,我县大力实施工程造林及开展全民义务植树等社会造林活动,取得了显著成效.今年,市政公司为绿化西湖沿河风光带,计划购买五角枫、洋槐两种树苗共500株,五角枫每株50元,洋槐每株80元.若购买树苗预计用37000元,求五角枫、洋槐两种树苗各购买多少株?
查看答案
manfen5.com 满分网(1)试确定反比例函数和m的值;
(2)平移后的一次函数的表达式;
(3)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于一次函数的值?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.