满分5 > 初中数学试题 >

(2008•深圳)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=...

manfen5.com 满分网(2008•深圳)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=manfen5.com 满分网,求△ACF的面积.
(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线; (2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解. (1)证明:连接BO,(1分) 方法一:∵AB=AD ∴∠D=∠ABD ∵AB=AO ∴∠ABO=∠AOB(2分) 又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180° ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线;(3分) 方法二:∵AB=AO,BO=AO ∴AB=AO=BO ∴△ABO为等边三角形 ∴∠BAO=∠ABO=60° ∵AB=AD ∴∠D=∠ABD 又∠D+∠ABD=∠BAO=60° ∴∠ABD=30°(2分) ∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO ∴BD是⊙O的切线; 方法三:∵AB=AD=AO ∴点O、B、D在以OD为直径的⊙A上 ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线; (2)【解析】 ∵∠C=∠E,∠CAF=∠EBF ∴△ACF∽△BEF ∵AC是⊙O的直径 ∴∠ABC=90° 在Rt△BFA中,cos∠BFA= ∴ 又∵S△BEF=8 ∴S△ACF=18.
复制答案
考点分析:
相关试题推荐
(2009•广东)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.
(1)求△BDE的周长;
(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.

manfen5.com 满分网 查看答案
已知关于x的方程x2-(k+2)x+2k=0.
(1)求证:无论k取任意实数值,方程总有实数根.
(2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△ABC的周长.
查看答案
(2009•荆门)已知x=2+manfen5.com 满分网,y=2-manfen5.com 满分网,计算代数式manfen5.com 满分网的值.
查看答案
计算:
(1)sin230°+cos245°+manfen5.com 满分网sin60°•tan45°;
(2)解方程:x2+4x-5=0
查看答案
(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=    元时,一天出售该种文具盒的总利润y最大. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.