满分5 > 初中数学试题 >

(2010•鞍山)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=1...

(2010•鞍山)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到S与t之间的函数关系式. (2)以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况: ①若PQ=BQ,②若BP=BQ,③若PB=PQ. 在Rt△PMQ中根据勾股定理,就得到一个关于t的方程,就可以求出t. (3)根据相似三角形对应边成比例可列式求出t,从而根据正切的定义求出值. (4)首先假设存在,然后再根据相似三角形对应边成比例求证. 【解析】 (1)如图,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形. ∴PM=DC=12. ∵QB=16-t, ∴S=×12×(16-t)=96-6t(0≤t<16); (2)由图可知:CM=PD=2t,CQ=t. 以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况: ①若PQ=BQ. 在Rt△PMQ中,PQ2=t2+122, 由PQ2=BQ2得t2+122=(16-t)2, 解得t=; ②若BP=BQ. 在Rt△PMB中,BP2=(16-2t)2+122. 由BP2=BQ2得:(16-2t)2+122=(16-t)2 即3t2-32t+144=0. 由于△=-704<0, ∴3t2-32t+144=0无解, ∴PB≠BQ. ③若PB=PQ. 由PB2=PQ2,得t2+122=(16-2t)2+122 整理,得3t2-64t+256=0. 解得t1=,t2=16(舍去) 综合上面的讨论可知:当t=秒或t=秒时,以B、P、Q三点为顶点的三角形是等腰三角形. (3)如图,由△OAP∽△OBQ,得. ∵AP=2t-21,BQ=16-t, ∴2(2t-21)=16-t. ∴t=. 过点Q作QE⊥AD,垂足为E. ∵PD=2t,ED=QC=t, ∴PE=t. 在Rt△PEQ中,tan∠QPE=. 又∵AD∥BC, ∴∠BQP=∠QPE, ∴tan∠BQP=; (4)设存在时刻t,使得PQ⊥BD. 如图,过点Q作QE⊥AD于E,垂足为E. ∵AD∥BC ∴∠BQF=∠EPQ, 又∵在△BFQ和△BCD中∠BFQ=∠C=90°, ∴∠BQF=∠BDC, ∴∠BDC=∠EPQ, 又∵∠C=∠PEQ=90°, ∴Rt△BDC∽Rt△QPE, ∴,即. 解得t=9. 所以,当t=9秒时,PQ⊥BD.
复制答案
考点分析:
相关试题推荐
(2010•鞍山)在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•鞍山)已知一次函数y1=ax+b的图象与反比例函数y2=manfen5.com 满分网的图象相交于A、B两点,坐标分别为(-2,4)、(4,-2).
(1)求两个函数的解析式;
(2)结合图象写出y1<y2时,x的取值范围;
(3)求△AOB的面积;
(4)是否存在一点P,使以点A﹑B﹑O﹑P为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•鞍山)小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).
查看答案
(2010•鞍山)①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.