(2010•抚顺)如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
考点分析:
相关试题推荐
(2010•抚顺)某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.
(1)直接写出y与x的函数关系式;
(2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用不计);
(3)若每件T恤衫的成本价是45元,当10O<X≤500件(x为正整数)时,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?
查看答案
(2010•抚顺)星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60°角.在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为60°,AB为8米.请你帮助小强计算一下这颗大树的高度?(结果精确到1米.参考数据
≈1.4
≈1.7)
查看答案
(2010•抚顺)如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为
的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.
查看答案
(2010•抚顺)有4张不透明的卡片,除正面写有不同的数字-1、2、
、-
外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.
(1)从中随机抽取一张卡片,上面的数据是无理数的概率是多少?
(2)若从中随机抽取一张卡片,记录数据后放回.重新洗匀后,再从中随机抽取一张,并记录数据.请你用列表法或画树形图法求两次抽取的数据之积是正无理数的概率.
查看答案
(2010•抚顺)2010年5月1日上海世博会召开了,上海世博会对我国在政治、经济、文化等方面的影响很大.某校就同学们对上海世博会的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据统计图中所提供的信息解答下列问题:
(1)该校参加问卷调查的学生有______名;
(2)补全两个统计图;
(3)若全校有1500名学生,那么该校有多少名学生达到基本了解以上(含基本了解)的程度?
(4)为了让更多的学生更好的了解世博会,学校举办了两期专刊.之后又进行了一次调查,结果全校已有1176名学生达到了基本了解以上(含基本了解)的程度.如果每期专刊发表之后学生达到基本了解以上(含基本了解)的程度增长的百分数相同,试求这个百分数.
查看答案