两条对角线所交的角有两组,一组是上下的,一组是左右的,题中没有明确指出哪组角,所以应该分两种情况进行分析.
【解析】
分两种情况考虑:过O作OE⊥AB,反向延长交CD于F.
(i)当∠AOB=∠COD=60°
∵四边形ABCD是等腰梯形
∴OA=OB,OC=OD
∵∠AOB=∠COD=60°
∴△OAB,△OCD均是等边三角形
设AB=x,则CD=2-x
∴OE=x,OF=(2-x)
∴EF=
∴S梯形ABCD=(AB+CD)•EF=×2×=;
(ii)当∠AOD=∠BOC=60°
∴∠AOB=∠COD=120°
∴∠OAB=∠OBA=∠ODC=∠OCD=30°
设AB=x,则CD=2-x
∴OE=x,OF=(2-x)
∴EF=OE+OF=
∴S梯形ABCD=(AB+CD)•EF=×2×=
综上,等腰梯形ABCD的面积为或.