满分5 > 初中数学试题 >

(2007•江西)如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,B...

(2007•江西)如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.
(1)观察图形,写出图中两个不同形状的特殊四边形;
(2)选择(1)中的一个结论加以证明.

manfen5.com 满分网
(1)图中的特殊四边形比较多,容易找出,矩形BCEF,菱形BNEM,直角梯形BDEM,AENB;根据正六边形的性质容易证明; (2)∠BEF是直角,从而证明AE∥BD,BF∥CE,这样以上的特殊四边形就都可以证明了. 【解析】 (1)矩形ABDE,矩形BCEF;或菱形BNEM;或直角梯形BDEM,AENB等.(4分) (2)选择ABDE是矩形. 证明: ∵ABCDEF是正六边形, ∴∠AFE=∠FAB=120°, ∵AF=EF, ∴∠EAF=30°, ∴∠EAB=∠FAB-∠FAE=90度.(5分) 同理可证∠ABD=∠BDE=90度. ∴四边形ABDE是矩形.(7分) 选择四边形BNEM是菱形. 证明:同理可证:∠FBC=∠ECB=90°,∠EAB=∠ABD=90°, ∴BM∥NE,BN∥ME.∴四边形BNEM是平行四边形. ∵BC=DE,∠CBD=∠DEN=30°,∠BNC=∠END, ∴△BCN≌△EDN.∴BN=NE. ∴四边形BNEM是菱形.(7分) 选择四边形BCEM是直角梯形. 证明:同理可证:BM∥CE,∠FBC=90°,又由BC与ME不平行, 得四边形BCEM是直角梯形.
复制答案
考点分析:
相关试题推荐
(2007•自贡)某商店按图(Ⅰ)给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图所示的统计图(Ⅱ).请根据图中提供的信息回答下列问题.
(1)求该商店从乙厂购买的饮水机台数;
(2)求所购买的饮水机中,非优等品的台数;
(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?
manfen5.com 满分网
查看答案
先化简,再选一个你喜爱的且使原式有意义的数代入求值:manfen5.com 满分网
查看答案
(2009•江津区)计算:(π-3)-(-2sin30°)-2-1+manfen5.com 满分网
查看答案
(2009•江西)函数yl=x(x≥0),manfen5.com 满分网(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是   
manfen5.com 满分网 查看答案
(2008•江西)如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.