满分5 > 初中数学试题 >

(2009•中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当...

(2009•中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网
(1)要证三角形ABM和MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似. (2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长. (3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2. (1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°, ∵AM⊥MN, ∴∠AMN=90°, ∴∠CMN+∠AMB=90°. 在Rt△ABM中,∠MAB+∠AMB=90°, ∴∠CMN=∠MAB, ∴Rt△ABM∽Rt△MCN. (2)【解析】 ∵Rt△ABM∽Rt△MCN, ∴,即, ∴, ∴y=S梯形ABCN=(+4)•4 =-x2+2x+8 =-(x-2)2+10, 当x=2时,y取最大值,最大值为10. (3)【解析】 ∵∠B=∠AMN=90°, ∴要使△ABM∽△AMN,必须有, 由(1)知, ∴=, ∴BM=MC, ∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.
复制答案
考点分析:
相关试题推荐
(2005•江西)已知抛物线y=-(x-m)2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C.
(1)写出m=1时与抛物线有关的三个正确结论;
(2)当点B在原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值;若不存在,请说明理由;
(3)请你提出一个对任意的m值都能成立的正确命题(说明:根据提出问题的水平层次,得分略有差异).

manfen5.com 满分网 查看答案
(2004•新疆)在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.
(1)你认为小强的结果对吗?请说明理由.
(2)请你帮助小颖求出图中的x.
(3)你还有其他的设计方案吗?请在右边的图中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
(2009•新洲区模拟)某公司现有甲、乙两种品牌的饮水机,其中甲品牌有A、B两种型号,乙品牌有C、D、E三种型号,各种型号饮水机的价格如下表:
甲品牌乙品牌
型号ABCDE
价格(元)200170130120100
某校计划从甲、乙两种品牌中各选购一种型号的饮水机.
(1)若各种型号的饮水机被选购的可能性相同,那么E型号饮水机被选购的概率是多少(要求利用列表法或树形图).
(2)某校购买了两种品牌的饮水机共30台,其中乙品牌只选购了E型号,共用去资金5000元,问E型号的饮水机买了多少台?
查看答案
(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.
(1)请写出五个不同类型的正确结论;
(2)若BC=8,ED=2,求⊙O的半径.

manfen5.com 满分网 查看答案
(2007•江西)如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.
(1)观察图形,写出图中两个不同形状的特殊四边形;
(2)选择(1)中的一个结论加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.