由圆周角定理知:∠ABD=∠AOD=30°,由于BD平分∠ABC,且PE∥AB,可得到∠PEC=2∠DBC=60°,由此可证得△PEB是等腰三角形,即PE=BE=5,过P作BC的垂线PM,通过解直角三角形易求得PM的值,而BD是∠ABC的角平分线,所以P到弦AB、BC的距离相等,由此得解.
【解析】
∵BD平分∠ABC,
∴∠ABC=2∠ABD=∠AOD=60°,
∵PE∥AB,
∴∠PEC=∠ABC=60°,
∴∠DBC=∠BPE=30°,即PE=BE=5.
过P作PM⊥BC于M,则:PM=PE•sin60°=.
根据角平分线的性质知:P到弦AB的距离为.