满分5 > 初中数学试题 >

(2008•怀化)如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分...

(2008•怀化)如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,0),B(0,-8)两点.
(1)请求出直线AB的函数表达式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数表达式;
(3)设(2)中的抛物线交x轴于D,E两点,在抛物线上是否存在点P,使得S△PDE=manfen5.com 满分网S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据“两点法”可求直线AB解析式; (2)求直径AB,得半径MC的值,由中位线定理得MN=OB,CN=MC-MN,又CM垂直平分线段AO,可得C点横坐标及纵坐标,设抛物线顶点式,把B点坐标代入即可求抛物线解析式; (3)由(2)可求线段DE的长,△ABC的面积可求,这样可求△PDE中DE边上的高,可表示P点的纵坐标,代入抛物线解析式求P点横坐标即可. 【解析】 (1)设直线AB的函数表达式为y=kx+b(k≠0), ∵直线AB经过A(-6,0),B(0,-8), ∴由此可得 解得 ∴直线AB的函数表达式为y=-x-8. (2)在Rt△AOB中,由勾股定理,得, ∵⊙M经过O,A,B三点,且∠AOB=90°, ∴AB为⊙M的直径, ∴半径MA=5, 设抛物线的对称轴交x轴于点N, ∵MN⊥x, ∴由垂径定理,得AN=ON=OA=3. 在Rt△AMN中,, ∴CN=MC-MN=5-4=1, ∴顶点C的坐标为(-3,1), 设抛物线的表达式为y=a(x+3)2+1, ∵它经过B(0,-8), ∴把x=0,y=-8代入上式, 得-8=a(0+3)2+1,解得a=-1, ∴抛物线的表达式为y=-(x+3)2+1=-x2-6x-8. (3)如图,连接AC,BC, S△ABC=S△AMC+S△BMC=•MC•AN+MC•ON=×5×3+×5×3=15. 在抛物线y=-x2-6x-8中,设y=0,则-x2-6x-8=0, 解得x1=-2,x2=-4. ∴D,E的坐标分别是(-4,0),(-2,0),∴DE=2; 设在抛物线上存在点P(x,y),使得S△PDE=S△ABC=×15=1, 则S△PDE=•DE•|y|=×2×|y|=1,∴y=±1, 当y=1时,-x2-6x-8=1,解得x1=x2=-3,∴P1(-3,1); 当y=-1时,-x2-6x-8=-1,解得x1=-3+,x2=-3-, ∴P2(-3+,-1),P3(-3-,-1). 综上所述,这样的P点存在, 且有三个,P1(-3,1),P2(-3+,-1),P3(-3-,-1).
复制答案
考点分析:
相关试题推荐
(2007•滨州)如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.manfen5.com 满分网
查看答案
(2008•资阳)如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.
(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A,B之间的距离;
(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)

manfen5.com 满分网 查看答案
(2010•历下区三模)暑假期间,两名老师计划带领若干名学生去三亚旅游,他们联系了报价均为每人400元的两家旅行社.经协商,甲旅行社的优惠条件是:两名老师全额收费,学生都按六折收费;乙旅行社的优惠条件是:老师,学生都按七折收费.假设这两名老师带领x名学生去旅游,他们应该选择哪家旅行社?
查看答案
(2008•广东)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.
(1)求口袋中红球的个数.
(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是manfen5.com 满分网,你认为对吗?请你用列表或画树状图的方法说明理由.
查看答案
(2010•历下区三模)(1)如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,试说明EB=EC;
(2)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
①求证:CD是⊙O的切线;
②若⊙O的半径为3,求弧BC的长.(结果保留π)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.