满分5 > 初中数学试题 >

(2008•广安)如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,...

manfen5.com 满分网(2008•广安)如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<manfen5.com 满分网+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.
(1)利用待定系数法,将A,B的坐标代入解析式即可求得二次函数的解析式; (2)因为点B是y=x与y=x2-2x-4的交点,根据题意可求得N,M的坐标,则可表示出MN的长,通过纵坐标的绝对值的和求得; (3)把△BOM分成两个△OMN与△BMN,把MN作为两个三角形的底,通过点B,P的纵坐标表示出两个三角形的高即可求得三角形的面积. 【解析】 (1)由题意把点(1,-5)、(-2,4)代入y=x2+bx+c得: , 解得b=-2,c=-4,(3分) ∴此抛物线解析式为:y=x2-2x-4; (2)由题意得:, ∴x2-3x-4=0, 解得:x=4或x=-1(舍), ∴点B的坐标为(4,4), 将x=m代入y=x条件得y=m, ∴点N的坐标为(m,m), 同理点M的坐标为(m,m2-2m-4),点P的坐标为(m,0), ∴PN=|m|,MP=|m2-2m-4|, ∵0<m<+1, ∴MN=PN+MP=-m2+3m+4; (3)作BC⊥MN于点C, 则BC=4-m,OP=m, S=MN•OP+MN•BC, =2(-m2+3m+4), =-2(m-)2+12,(11分) ∵-2<0, ∴当m-=0,则m=时,S有最大值.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网(2007•福州)如图,已知直线y=manfen5.com 满分网x与双曲线manfen5.com 满分网交于A,B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案
(2008•遵义)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.
(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.
查看答案
(2007•钦州)从车站到书城有A1,A2,A3,A4四条路线可走,从书城到广场有B1,B2,B3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线.
(1)画树状图分析你所有可能选择的路线;
(2)你恰好选到经过路线B1的概率是多少?
查看答案
(2008•遵义)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).
manfen5.com 满分网
查看答案
(2010•历下区一模)(1)如图,已知AB=AC,AD=AE.求证:BD=CE;
manfen5.com 满分网
(2)如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13
求:①⊙O的半径;②AC的值.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.