满分5 > 初中数学试题 >

(2012•北塘区一模)如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段...

(2012•北塘区一模)如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

manfen5.com 满分网
(1)当∠QPA=90°时,由于∠QPO=∠QPA=90°,PQ=PO,则△OPQ是等腰直角三角形,∴∠QOA=45°.又由于OQ⊥CQ,所以∠C=45°,即△PQC是等腰直角三角形; (2)由等边对等角和三角形的外角与内角的关系知,∠C=90°-∠QOC=90°-30°=60°,故△QCP是等边三角形; (3)由于一直存在∠PQC=90°-∠OQP,∠C=90°-∠QOC,而∠QOC=∠OQP,∴∠C=∠PQC.故△QCP一定是等腰三角形. 【解析】 (1)等腰直角三角形; (2)当∠QPA=60°,△QCP是等边三角形. 证明:连接OQ. CQ是⊙O的切线, ∴∠OQC=90°. ∵PQ=PO, ∴∠PQO=∠QOP. ∴∠QOP+∠QCO=90°,∠OQP+∠CQP=90°, ∴∠QCO=∠CQP. ∴PQ=PC. 又∠QPA=60°, ∴△QCP是等边三角形; (3)等腰三角形.
复制答案
考点分析:
相关试题推荐
(2008•金华)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(-2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′______、C′______
(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是______

manfen5.com 满分网 查看答案
(2010•句容市一模)已知关于x的一元二次方程x2+2ax+b2=0,
(1)若a≥0,b≥0,方程有实数根,试确定a,b之间的大小关系;
(2)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,请你用树状图或表格表示出所有可能出现的结果,并求出使上述方程有实数根的概率.
查看答案
(2008•延庆县二模)邹城市第八中学开展了“孝敬父母,从做家务事做起”的活动.为了解活动实施情况,专家组在22中随机抽取了七、八、九三个年级的学生共150名,调查他们一周(按七天计算)做家务所用的时间(单位:小时),得到一组数据,绘制成下表.请根据该表完成下列问题.
时间(单位:小时)0.5~1.01.0~1.51.5~2.02.0~2.5
人          数7248237
(说明:0.5~1.0包括0.5,但不包括1.0,其余同理)
(1)根据上表的数据补全条形统计图;
(2)写出这组数据的中位数落在什么范围内?
(3)根据以上信息判断,被调查的150名学生中,每周做家务所用的时间在1.5小时以下的学生所占的百分比是多少?
(4)若全县约有10000名初中生,请估计每周做家务所用的时间在1.5小时以下的学生人数;
(5)根据以上信息,请你提出一条积极合理的建议.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,点E,F分别在AC,AB上,EF∥BC,将△AEF向上翻折,得到△A′EF,再展开.
(1)求证:四边形AEA′F是菱形;
(2)直接写出当等腰△ABC满足什么条件时,四边形AEA′F将变成正方形?
(3)当点A′恰好落在BC上时,直接写出EF与BC的数量关系.

manfen5.com 满分网 查看答案
(2008•自贡)解不等式组manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.