满分5 > 初中数学试题 >

(2010•莱芜)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴...

(2010•莱芜)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点manfen5.com 满分网
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?

manfen5.com 满分网
(1)将A、B、C的坐标代入抛物线的解析式中,即可求得待定系数的值; (2)根据(1)得到的抛物线的解析式,可求出其对称轴方程联立直线OD的解析式即可求出D点的坐标;由于⊙D与x轴相切,那么D点纵坐标即为⊙D的半径;欲求劣弧EF的长,关键是求出圆心角∠EDF的度数,连接DE、DF,过D作y轴的垂线DM,则DM即为D点的横坐标,通过解直角三角形易求得∠EDM和∠FDM的度数,即可得到∠EDF的度数,进而可根据弧长计算公式求出劣弧EF的长; (3)易求得直线AC的解析式,设直线AC与PG的交点为N,设出P点的横坐标,根据抛物线与直线AC的解析式即可得到P、N的纵坐标,进而可求出PN,NG的长;Rt△PGA中,△PNA与△NGA同高不等底,那么它们的面积比等于底边PN、NG的比,因此本题可分两种情况讨论: ①△PNA的面积是△NGA的2倍,则PN:NG=2:1;②△PNA的面积是△NGA的,则NG=2PN; 可根据上述两种情况所得的不同等量关系求出P点的横坐标,进而由抛物线的解析式确定出P点的坐标. 【解析】 (1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),; ∴, 解得; ∴抛物线的解析式为:;(3分) (2)易知抛物线的对称轴是x=4, 把x=4代入y=2x,得y=8, ∴点D的坐标为(4,8); ∵⊙D与x轴相切,∴⊙D的半径为8;(1分) 连接DE、DF,作DM⊥y轴,垂足为点M; 在Rt△MFD中,FD=8,MD=4, ∴cos∠MDF=; ∴∠MDF=60°, ∴∠EDF=120°;(2分) ∴劣弧EF的长为:;(1分) (3)设直线AC的解析式为y=kx+b; ∵直线AC经过点, ∴, 解得; ∴直线AC的解析式为:;(1分) 设点,PG交直线AC于N, 则点N坐标为, ∵S△PNA:S△GNA=PN:GN; ∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN; 即=; 解得:m1=-3,m2=2(舍去); 当m=-3时,=; ∴此时点P的坐标为;(2分) ②若PN:GN=2:1,则PG:GN=3:1,PG=3GN; 即=; 解得:m1=-12,m2=2(舍去); 当m1=-12时,=; ∴此时点P的坐标为; 综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.(2分)
复制答案
考点分析:
相关试题推荐
(2010•莱芜)在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.
manfen5.com 满分网
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是______
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是______
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
查看答案
(2010•莱芜)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)问符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?
查看答案
(2010•莱芜)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.

manfen5.com 满分网 查看答案
(2010•莱芜)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,manfen5.com 满分网

manfen5.com 满分网 查看答案
(2010•莱芜)2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.