满分5 > 初中数学试题 >

(2009•凉山州)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O...

(2009•凉山州)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.
(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.

manfen5.com 满分网
(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式. (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1. 在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间. 【解析】 (1)由题意得OA=|-4|+|8|=12, ∴A点坐标为(-12,0). ∵在Rt△AOC中,∠OAC=60°, OC=OAtan∠OAC=12×tan60°=12. ∴C点的坐标为(0,-12). 设直线l的解析式为y=kx+b, 由l过A、C两点, 得,解得 ∴直线l的解析式为:y=-x-12. (2)如图,设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1. 则O1O3=O1P+PO3=8+5=13. ∵O3D1⊥x轴,∴O3D1=5, 在Rt△O1O3D1中,. ∵O1D=O1O+OD=4+13=17,∴D1D=O1D-O1D1=17-12=5, ∴(秒). ∴⊙O2平移的时间为5秒.
复制答案
考点分析:
相关试题推荐
(2009•泸州)有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;
(2)求关于x的一元二次方程x2-mx+manfen5.com 满分网n=0有实数根的概率.
查看答案
(2009•乐山)如图,某学习小组为了测量河对岸塔AB的高度,在塔底部点B的正对岸点C处,测得塔顶点A的仰角为∠ACB=60°
(1)若河宽BC是36米,求塔AB的高度;(结果精确到0.1米)
(2)若河宽BC的长度不易测量,如何测量塔AB的高度呢?小强思考了一种方法:从点C出发,沿河岸前行a米至点D处,若在点D处测出∠BDC的度数θ,这样就可以求出塔AB的高度了.小强的方法可行吗?若可行,请用a和θ表示塔AB的高度;若不能,请说明理由.
manfen5.com 满分网
查看答案
(2009•德城区)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
manfen5.com 满分网
(1)求该班共有多少名学生?
(2)在条形图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.
查看答案
如图,在等腰梯形ABCD,AD∥BC,G作GE∥DC,F是EC的中点,连接GF并延长交DC的延长线于点H.
求证:BG=CH.

manfen5.com 满分网 查看答案
(2009•杭州)如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.