满分5 > 初中数学试题 >

(2010•锦州)如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延...

(2010•锦州)如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.

manfen5.com 满分网
(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线; (2)在Rt△ABC中,运用勾股定理可将爱那个AC的长求出,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出. (1)证明:连接OD,BC,OD与BC相交于点G, ∵D是弧BC的中点, ∴OD垂直平分BC, ∵AB为⊙O的直径, ∴AC⊥BC, ∴OD∥AE. ∵DE⊥AC, ∴OD⊥DE, ∵OD为⊙O的半径, ∴DE是⊙O的切线. (2)【解析】 由(1)知:OD⊥BC,AC⊥BC,DE⊥AC, ∴四边形DECG为矩形, ∴CG=DE=3, ∴BC=6. ∵⊙O的半径为5, ∴AB=10, ∴AC==8, 由(1)知:DE为⊙O的切线, ∴DE2=EC•EA,即32=(EA-8)EA, 解得:AE=9. ∵D为弧BC的中点, ∴∠EAD=∠FAB, ∵BF切⊙O于B, ∴∠FBA=90°. 又∵DE⊥AC于E, ∴∠E=90°, ∴∠FBA=∠E, ∴△AED∽△ABF, ∴, ∴, ∴BF=.
复制答案
考点分析:
相关试题推荐
(2009•南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.
求证:AF=BF+EF.

manfen5.com 满分网 查看答案
(2009•成都)有一枚均匀的正四面体,四个面上分别标有数字:1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;
(2)分别求出当S=0和S<2时的概率.
查看答案
(2009•安徽)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).
(1)画出拼成的矩形的简图;
(2)求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
(2010•五通桥区模拟)计算:-2-2-manfen5.com 满分网+(π-3.14)-manfen5.com 满分网sin45°.
查看答案
(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:
①∠AFC=∠C;
②DE=CF;
③△ADE∽△FDB;
④∠BFD=∠CAF
其中正确的结论是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.