满分5 > 初中数学试题 >

(2009•潍坊)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点...

(2009•潍坊)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

manfen5.com 满分网
(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式; (2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD-DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上. 【解析】 (1)∵圆心O在坐标原点,圆O的半径为1 ∴点A、B、C、D的坐标分别为A(-1,0)、B(0,-1)、C(1,0)、D(0,1) ∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C ∴M(-1,-1)、N(1,1) ∵点D、M、N在抛物线上,将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c, 得: 解之,得: ∴抛物线的解析式为y=-x2+x+1. (2)∵y=-x2+x+1=-(x-)2+ ∴抛物线的对称轴为 ∴OE=,DE= 连接BF,则∠BFD=90° ∴△BFD∽△EOD ∴ 又DE=,OD=1,DB=2 ∴FD= ∴EF=FD-DE=. (3)点P在抛物线上. 设过D、C点的直线为y=kx+b 将点C(1,0)、D(0,1)的坐标代入y=kx+b,得 k=-1,b=1 ∴直线DC为y=-x+1 过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1 将y=-1代入y=-x+1,得x=2 ∴P点的坐标为(2,-1) 当x=2时,y=-x2+x+1=-22+2+1=-1 所以,P点在抛物线y=-x2+x+1上.
复制答案
考点分析:
相关试题推荐
(2009•桂林)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

manfen5.com 满分网 查看答案
(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)
 裁法一裁法二裁法三
A型板材块数12
B型板材块数2mn
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m=______,n=______
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?

manfen5.com 满分网 查看答案
关于x的方程manfen5.com 满分网有两个不相等的实数根.
(1)求k的取值范围;
(2)已知关于x的方程x2-(k+1)x+k+2=0的两个实数根的平方和等于6,求k的值.
查看答案
(2012•临夏州)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
(2009•北京)阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连接AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.