满分5 > 初中数学试题 >

(2007•义乌)如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左...

manfen5.com 满分网(2007•义乌)如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
(1)因为抛物线与x轴相交,所以可令y=0,解出A、B的坐标.再根据C点在抛物线上,C点的横坐标为2,代入抛物线中即可得出C点的坐标.再根据两点式方程即可解出AC的函数表达式; (2)根据P点在AC上可设出P点的坐标.E点坐标可根据已知的抛物线求得.因为PE都在垂直于x轴的直线上,所以两点之间的距离为yp-yE,列出方程后结合二次函数的性质即可得出答案; (3)存在四个这样的点. ①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0); ②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0); ③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+7.因此直线GF与x轴的交点F的坐标为(4+,0); ④如图,同③可求出F的坐标为(4-,0); 综合四种情况可得出,存在4个符合条件的F点. 【解析】 (1)令y=0,解得x1=-1或x2=3 ∴A(-1,0)B(3,0) 将C点的横坐标x=2代入y=x2-2x-3得y=-3 ∴C(2,-3) ∴直线AC的函数解析式是y=-x-1; (2)设P点的横坐标为x(-1≤x≤2) 则P、E的坐标分别为:P(x,-x-1) E(x,x2-2x-3) ∵P点在E点的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-)2+, ∴当时,PE的最大值=; (3)存在4个这样的点F,分别是F1(1,0),F2(-3,0),F3(4+,0),F4(4-,0). ①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0); ②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0); ③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+4+.因此直线GF与x轴的交点F的坐标为(4+,0); ④如图,同③可求出F的坐标为(4-,0). 综合四种情况可得出,存在4个符合条件的F点.
复制答案
考点分析:
相关试题推荐
(2003•昆明)某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买3000千克以上(含3 000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5 000元.
(1)分别写出该公司的两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式.
(2)当购买量在什么范围内时,选择哪种方案付款较少?说明理由.
查看答案
(2008•双柏县)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
查看答案
(2008•双柏县)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:
(1)作出关于直线AB的轴对称图形;
(2)将你画出的部分连同原图形绕点O逆时针旋转90°;
(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.

manfen5.com 满分网 查看答案
(2008•双柏县)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.

manfen5.com 满分网 查看答案
(2007•昆明)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD的高(结果保留根号).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.