满分5 > 初中数学试题 >

(2009•山西)如图,已知直线l1:y=x+与直线l2:y=-2x+16相交于...

(2009•山西)如图,已知直线l1:y=manfen5.com 满分网x+manfen5.com 满分网与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

manfen5.com 满分网
(1)把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长. 联立方程组可求出交点C的坐标,继而求出三角形ABC的面积. (2)已知xD=xB=8易求D点坐标.又已知yE=yD=8可求出E点坐标.故可求出DE,EF的长. (3)作CM⊥AB于M,证明Rt△RGB∽Rt△CMB利用线段比求出RG=2t.又知道S=S△ABC-S△BRG-S△AFH,根据三角形面积公式可求出S关于t的函数关系式. 【解析】 (1)由x+=0,得x=-4. ∴A点坐标为(-4,0), 由-2x+16=0, 得x=8. ∴B点坐标为(8,0), ∴AB=8-(-4)=12, 由,解得 ∴C点的坐标为(5,6), ∴S△ABC=AB•yC=×12×6=36. (2)∵点D在l1上且xD=xB=8, ∴yD=×8+=8, ∴D点坐标为(8,8), 又∵点E在l2上且yE=yD=8, ∴-2xE+16=8, ∴xE=4, ∴E点坐标为(4,8), ∴DE=8-4=4,EF=8. (3)①当0≤t<3时,如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR(t=0时,为四边形CHFG). 过C作CM⊥AB于M,则Rt△RGB∽Rt△CMB, ∴,即,∴RG=2t, ∵Rt△AFH∽Rt△AMC, ∴S=S△ABC-S△BRG-S△AFH=36-×t×2t-(8-t)×(8-t), 即S=-t2+t+. ②当3≤t<8时,如图2所示,矩形DEFG与△ABC重叠部分为梯形HFGR,由①知,HF=(8-t), ∵Rt△AGR∽Rt△AMC, ∴=,即=,∴RG=(12-t), ∴S=(HF+RG)×FG=[(8-t)+(12-t)]×4, 即S=-t+; ③当8≤t≤12时,如图3所示,矩形DEFG与△ABC重叠部分为△AGR, 由②知,AG=12-t,RG=(12-t), ∴S=AG•RG=(12-t)×(12-t)即S=(12-t)2, ∴S=t2-8t+48.
复制答案
考点分析:
相关试题推荐
(2010•镇海区模拟)如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究:
(1)矩形ABEF的面积是______;(用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.
manfen5.com 满分网
联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
manfen5.com 满分网
查看答案
(2012•兰州一模)我国西南五省发生旱情后,我市中小学学生得知遵义市某山区学校学生缺少饮用水,全市中小学生决定捐出自己的零花钱购买300吨矿泉水送往灾区学校.我市“为民”货车出租公司听说此事后,决定免费将这批矿泉水送往灾区学校,已知每辆货车配备2名司机,整个车队配备1名领队,司机及领队往返途中的生活费y(单位:元)与货车台数x(单位:台)的关系如图①所示,为此“为民”货车出租公司花费8200元.又知“为民”出租车公司有小、中、大三种型号货车供出租,本次派出的货车每种型号货车不少于3台,各种型号货车载重量和预计运费如下表所示.
载重(吨/台)121520
运费(元/辆)100012001500
(1)求出y与x之间的函数关系式和公司派出的出租车台数;
(2)记总运费为W(元),求W与小型货车台数p之间的函数关系式;(暂不写自变量取值范围)
(3)求出小、中、大型货车各多少台时总运费最小以及最小运费?

manfen5.com 满分网 查看答案
(2009•鸡西)为了“让所有的孩子都能上得起学,都能上好学”,国家自2007年起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):
类型班级城镇非低保
户口人数
农村户口人数城镇户口
低保人数
总人数
甲班20550
乙班28224
manfen5.com 满分网
(1)将表(一)和图(一)中的空缺部分补全.
(2)现要预定2009年下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免manfen5.com 满分网,城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?
(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?
查看答案
(2006•安徽)田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出-匹,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强…
(1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?
(2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)
查看答案
(2009•烟台)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据manfen5.com 满分网=1.73)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.